пятница, 27 ноября 2020 г.

ПЯТНИЦА. 27.11.20г. 206,308,201,108 группы.

ГРУППА 206

Тема:  Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах. Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.







Спирты – производные углеводородов, в которых один или несколько атомов водорода заменены на функциональную группу -OH (гидроксил):

R-OH

CH4 метан – СH3OH метиловый спирт

СН3-СН3 этан – CH3-CH2OH этиловый спирт

Названия спиртов (номенклатура ИЮПАК)

Название спирта образуется от названия предельного углеводорода с прибавлением окончания -ол. Например, СH3–OH – метанол, CH3–CH2–OH – этанол,

CH3–CH2–CH2–OHпропанол-1
пропанол-2

Выбор главной цепи

1. Главная цепь включает гидроксил.

2. Главная цепь нумеруется так, чтобы атом углерода с гидроксилом получил наименьший номер.

4-метил-2-этилпентанол-1

Одноатомный спирт – спирт, молекула которого содержит одну гидроксильную группу. Пример: СН3-СН2-СН2ОН

Многоатомный спирт – спирт, молекула которого содержит две или более гидроксильные группы. Пример: СН2ОН-СН2-СН2ОН

Количество гидроксильных групп в молекуле отражается в названии частицами ди-, три-, тетра- и т. д., поставленными перед суффиксом -ол.

CH2OH–CHOH–CH2OH

пропантриол-1,2,3 (глицерин).

Физические свойства спиртов

1. Температуры плавления и кипения спиртов, так же как и углеводородов, увеличиваются с ростом числа атомов углерода в молекуле, но их значения у спиртов намного больше, чем у соответствующих алканов. См. Табл. 1.

Табл. 1. Физические свойства спиртов

Причина – водородные связи между молекулами спиртов:

2. Спирты растворимы в воде гораздо лучше углеводородов. Метиловый и этиловый спирты смешиваются с водой в любых соотношениях.

С увеличением углеводородного радикала растворимость в воде постепенно уменьшается. Табл. 2.

Табл. 2 Растворимость спиртов в воде.

Причина – высокая полярность спиртов, образование водородных связей между молекулами спиртов и воды:

3. Низшие спирты обладают характерным запахом.Например, кошачий запах связан с тем, что в этот запах основным компонентом входит изопропиловый спирт.

Рис. 1. Физические свойства некоторых спиртов. (Источник)

Почему спирты имеют высокие температуры кипения

На этом уроке вы изучили тему «Спирты. Классификация спиртов. Предельные одноатомные спирты: строение и номенклатура». Вы узнали о том, что спиртами называют углеводороды, в которых один атом углеводорода (или несколько) замещен на гидроксил, о разновидностях спиртов, об их строении.

 

ГРУППА 308
ТЕМА:Лаб.работа №3 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом»
Цель: Изучить и сравнить строение клеток растений, животных, грибов, бактерий.
Оборудование: Микропрепараты, микроскоп.
Ход работы.

Сравнение клеток растений, животных, грибов, бактерий.

 На данный момент различают прокариотические и эукариотические организмы (клетки). К первым принадлежат сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии и хламидии. Ко вторым принадлежат большинство водорослей, грибы и лишайники, растения и животные. В отличие от прокариотической, эукариотическая клетка имеет ядро, ограниченное оболочкой из двух мембран, и большое количество мембранных органелл.


Признаки

Прокариотические клетки (Прокариоты)

Эукариотические клетки (Эукариоты)

Клеточная организация

В основном одноклеточные организмы

В основном многоклеточные организмы с выраженной дифференцировкой клеток и тканей

Размеры клеток

1-10 мкм

10 -100 мкм

Энергетический обмен

Аэробный или анаэробный

Аэробный

Органеллы

Отсутствуют или весьма малочисленные

Многочисленные

Синтез РНК и белка

В цитоплазме

Разделен: синтез и процессинг РНК - в ядре, синтез белка -в цитоплазме

Плазматическая мембрана

Имеется

Имеется

Ядерная оболочка

Отсутствует

Имеется

Хромосомы

Одиночные оголенные структуры,   состоящие только из ДНК кольцевой формы

Несколько структур, состоящих из ДНК и белка

Митохондрии

Отсутствуют

Имеются

Цитоплазматическая сеть

Отсутствует

Имеется

Аппарат Гольджи

Отсутствует

Имеется

Рибосомы

Имеются - 70 S

Имеются - 80 S (в цитоплазме), 70 S (в органеллах)

Клеточная стойка

Имеется, состоит из аминосахаров и мурамовой кислоты

Отсутствует у животных клеток, у растительных клеток состоит главным образом из целлюлозы

Капсула

Если имеется, то состоит из мукополисахаридов

Отсутствует

Вакуоли

Отсутствуют

Имеются (особенно у растительных клеток)

Лизосомы

Отсутствуют

Имеются

Фотосинтетический аппарат

Мембраны с хлорофиллом и фикоцианином у сине-зеленых водорослей и с бактериохлоро-филлом у некоторых бактерий

Хлоропласты, содержащие хлорофиллы А и В, собранные в стопки (у растений)

Жгутики

Имеются у некоторых видов, но лишены структуры (9 + 2)

Имеются у некоторых видов и обладают структурой (9 + 2)

Ядрышко

Отсутствует

Имеется

Цитоскелет

Отсутствует

Имеется

Амебоидное движение

Отсутствует

Имеется

Ток цитоплазмы

Отсутствует

Самостоятельный

Эндоцитоз. ЭКЗОЦИТОЗ

Отсутствуют

Имеются

Внутриклеточное пищеварение

Отсутствует

Имеется

Деление клеток

Бинарное

Митоз (у половых клеток - мейоз)

ЗАПИШИТЕ ВЫВОД: Растительная, животная, грибная и бактериальная клетки сходны тем, что имеют:

- мембрану, которая их ограничивает

- цитоплазму, которая обеспечивает транспорт веществ и связывает органоиды клетки

- рибосомы, синтезирующие белки

Различия заключаются в том, что

-грибная, животная и растительная клетки имеют ядро и являются эукариотами. Бактериальная клетка ядра не имеет и является прокариотической.

--грибная, животная и растительная клетки имеют мем бранные органоиды ( ЭПС, аппарат Гольджи, митохондрии, пластиды, лизосомы). У бактериальной клетки их нет. Функции пластид и митохондрий выполняют особые образования клеточной мембраны мезосомы.

- грибная, животная и растительная клетки имеют линейные хромосомы, расположенные в ядре. Бактериальная клетка имеет кольцевую голую (без белков) ДНК-нуклеоид, лежащую в цитоплазме

- грибная, растительная и бактериальная клетка имеют клеточную стенку поверх мембраны, у животной клетки клеточной стенки нет.

-грибная клеточная стенка состоит из хитина, у растительной-из целлюлозы, у бактериальной-из муреина.

-Растительная клетка и некоторые бактериальные имеют пластиды, у грибной и животной их нет.



ГРУППА201
ТЕМА:Алканы. Алканы: гомологический ряд, изомерия и номенклатура алканов.

Алканы – соединения гомологического ряда метана. Это насыщенные нециклические углеводороды. Химические свойства алканов зависят от строения молекулы и физического состояния веществ.


Строение алканов

Молекула алкана состоит из атомов углерода и водорода, которые образуют метиленовые (-CH2-) и метильные (-CH3) группы. Углерод может создавать четыре ковалентные неполярные связи с соседними атомами. Именно наличие прочных σ-связей -С-С- и -С-Н обуславливает инертность гомологического ряда алканов.

Соединения реагируют на свету или при нагревании. Реакции протекают по цепному (свободно-радикальному) механизму. Таким образом, связи способны расщепляться только под действием свободных радикалов. В результате замещения водорода образуются галогеналканы, соли, цике

Алканы относятся к предельным или насыщенным углеродам. Это значит, что молекулы содержат максимальное количество атомов водорода. Из-за отсутствия свободных связей реакции присоединения для алканов не характерны.

Химические свойства

Общие свойства алканов приведены в таблице.

Типы химических реакций

Описание

Уравнение

Галогенирование

Реагируют с F2, Cl2, Br2. Реакция с йодом не идёт. Галогены замещают атом водорода. Реакция с фтором сопровождается взрывом. Хлорирование и бромирование происходит при температуре 300-400°C. В результате образуются галогеналканы

CH4 + Cl2 → CH3Cl + HCl

Нитрование (реакция Коновалова)

Взаимодействие с разбавленной азотной кислотой при температуре 140°C. Атом водорода замещается нитрогруппой NO2. В результате образуются нитроалканы

CH3-CH3 +HNO3 → CH3-CH2-NO2 + H2O

Сульфохлорирование

Сопровождается окислением с образованием алкансульфонилхлоридов

R-H + SO2 + Cl2 → R-SO3Cl + HCl

Сульфоокисление

Образование алкансульфоновых кислот в избытке кислорода. Атом водорода замещается группой SO3H

C5H10 + HOSO3H → C5H11SO3H + H2O

Крекинг

Происходит в присутствии катализатора при высоких температурах. В результате разрыва связей С-С образуются алканы и алкены

C4H10 → C2H6 + C2H4

Горение

В избытке кислорода происходит полное окисление до углекислого газа. При недостатке кислорода происходит неполное окисление с образованием угарного газа, сажи

– CH4 + 2O2 → CO2 + 2H2O;

– 2CH4 + 3O2 → 2CO + 4H2O

Каталитическое окисление

Происходит частичное окисление алканов при небольшой температуре и в присутствии катализаторов. Могут образовываться кетоны, альдегиды, спирты, карбоновые кислоты

C4H10 → 2CH3COOH + H2O

Дегидрирование

Отщепление водорода в результате разрыва связей С-Н в присутствии катализатора (платины, оксида алюминия, оксида хрома) при температуре 400-600°С. Образуются алкены

C2H6 → C2H4 + H2

Ароматизация

Реакция дегидрирования с образованием циклоалканов

C6H14 → C6H6 + 4H2

Изомеризация

Образование изомеров под действием температуры и катализаторов

C5H12 → CH3-CH(CH3)-CH2-CH3

Чтобы понимать, как проходит реакция и какие радикалы замещаются, рекомендуется записывать структурные формулы.



Применение

Алканы широко применяются в промышленной химии, косметологии, строительстве. Из соединений изготавливают:

  • топливо (бензин, керосин);
  • асфальт;
  • смазочные масла;
  • вазелин;
  • парафин;
  • мыло;
  • лаки;
  • краски;
  • эмали;
  • спирты;
  • синтетические ткани;
  • каучук;
  • адьдегиды;
  • пластмассы;
  • моющие средства;
  • кислоты;
  • пропелленты;
  • косметические средства.

Подробнее: https://obrazovaka.ru/himiya/himicheskie-svoystva-alkanov-primenenie.html


ГРУППА 108
ТЕМА:Металлы главных подгрупп (А-групп) перио­дической системы химических элементов.  

Эпиграфом нашего урока можно взять слова Михаила Васильевича Ломоносова: «Металлы – светлое тело, которое ковать можно».

Металлов много есть, но дело не в количестве:

В команде работящей металлической

Такие мастера, такие личности!

Преуменьшать нам вовсе не пристало

Заслуги безусловные металлов

Пред египтянином, китайцем, древним греком

И каждым современным человеком.

Именно ковкость и пластичность металлов были важнейшими свойствами, благодаря которым металлы начали активно использоваться человеком. Первые сведения использования металлов в хозяйственной деятельности людей относятся к 4-3 тыс. до н.э. Это время называют медным векомЗатем бронза заменила чистую медь и именно из этого сплава начали изготавливать орудия труда и оружие.

Когда человек научился получать температуру более 1500 °С наступила эпоха изделий из железа и его сплавов – чугуна и стали. Это время стали называть железным веком, начало которого датируют с середины 1 тыс. до н.э. условно можно сказать, что железный век продолжается и по сей день. Ведь примерно 9/10 из всех используемых металлов и сплавов – это сплавы на основе железа. Сегодня мы разбираем свойства металлов главных подгрупп.






«Общая характеристика металлов».

Металл-элемент

Металл-вещество

  1. Положение в ПСХЭ

1А,2А,3А-подгруппы,

все d-элементы

1.Кристаллическая решетка - металлическая

  1. Количество внешних электронов – 1,2,3 у большинства металлов

2.Вид химической связи - металлическая

  1. Образует:

-простое вещество,

-ион Меn+;

-оксид или гидроксид;

-соль

3. Металлы являются восстановителями.

Ме0 – nе = Меn+.



3.Самые мягкие – щелочные металлы,

Самый твердый – хром,

Самый легкий – литий (плотность 0,53 г/см),

Самый тяжелый осмий (плотность 22,5 г/см),

Самый легкоплавкий – ртуть (температура плавления –( -38,9С),

Самый тугоплавкий – вольфрам (3420 С),

Магнитными свойствами обладают железо, никель, кобальт,

Вытягиваются в проволоку и листы – золото, медь, алюминий,

Хрупкие – висмут и марганец,

Самые блестящие – серебро, алюминий, палладий,

Наиболее электропроводные – серебро, медь, золото, алюминий.

Драгоценные металлы- золото, серебро, платина, рутений, родий, осмий, иридий.

Радиоактивные металлы – уран, торий, полоний, актиний, франций, радий.

IV. Объяснение нового материала.

Основополагающий вопрос. Какие знания о свойствах металлов необходимы человеку?

1.Классификация металлов.

Металлы 1 главной подгруппы называются щелочными –образуют щелочи, 2 группы – щелочно-земельными, из 3 группы изучаем свойства одного из широко применяемых в технике металлов – алюминия.

Атомы щелочных металлов содержат на внешнем энергетическом уровне только 1 электрон, который они легко отдают при химических взаимодействиях, поэтому являются сильными восстановителями.

Строение атома лития и натрия:


hello_html_65a398ee.gif


hello_html_m3c223116.gif


Вот, что говорится об элементах 1 группы главной подгруппы ПСХЭ:

I группа

Следующие за щелочными металлами элементы составляют главную подгруппу II группы, также являются типичными металлами, обладающими сильной восстановительной способностью. Са, SrBaRa – щелочноземельные металлы.

hello_html_m2a8a8f77.gif


II группа

К металлам относятся и элементы главной подгруппы III группы, исключая бор.


hello_html_m12100b7a.gif


Из элементов главных подгрупп следующих групп к металлам относят:

в IV группе – германий, олово, свинец;

в V группе – сурьма и висмут;

в VI группе – полоний.

Элементы побочных подгрупп – все металлы.

2.Химические свойства металлов.

Зная строение металлов, можно предвидеть их общие химические свойства. 
В атомах металлов на внешней электронной оболочке находятся электроны, которые легко отрываются от атомов. 
Наиболее общим химическим свойством металлов является способность их атомов при химических реакциях отдавать валентные электроны и превращаться в положительно заряженные ионы, т.е. металлы в реакциях являются сильными восстановителями.
2.1.Взаимодействие с простыми веществами: кислородом, галогенами, серой, азотом, водородом.

Реакции с кислородом. 
Nа + O2 → 2 Nа2O; (побочный продукт)
Взаимодействие с галогенами.
2К + Cl2 →2 КCl; 
Взаимодействие с серой.
2K + S → K2 S; 

Са + S → СаS; 

Взаимодействие с азотом.

6К + N→ 2K N;

Взаимодействие с водородом (щелочные металлы).

2К + Н2 → 2КН
Обратите внимание, что в этих реакциях атомы металлов отдают электроны, т.е. являются восстановителями, а неметаллы принимают электроны, т.е. являются окислителями. 

Вывод: Запомните, металлы реагируют с галогенами, кислородом, серой, азотом, водородом, образуя соединения ……иды. В реакциях с неметаллами металлы являются восстановителями.
Давайте теперь рассмотрим с вами взаимодействие металлов со сложными веществами. 
2.2. Взаимодействие со сложными веществами.

2.2.1.Взаимодействие металлов с водой. 
При каких условиях металлы вступают в реакцию с водой? (При обычной температуре и при нагревании). 
Что образуется при взаимодействии воды с активными металлами при обычной температуре? (Образуется гидроксид и выделяется водород). 
Обсуждаем, какой металл реагирует более активно с водой? Почему? С чем это связано? (Положение в ПСХЭ, чем больше радиус, тем активнее металл). 
2Na + H2O → 2NaOH + H2 ↑.  
Ca + 2H2O → Ca(OH)2 + H2 ↑. 
Как вы думаете, почему натрий более активно взаимодействует с водой, чем кальций? (Натрий более активный металл, чем кальций. Он легко отдает свои валентные электроны, является самым сильным восстановителем). 
При взаимодействии воды с менее активными металлами образуются оксиды металлов и выделяется водород. Это металлы, стоящие в ряду напряжений после алюминия
Составляем уравнение реакции взаимодействия цинка с водой. 
Zn + H2O → ZnO + H2 ↑; 
Скажите пожалуйста, все ли металлы взаимодействуют с водой? (Нет). 
Совершенно верно. А почему? (см. электрохимический ряд напряжения). 
Скажите, а будет ли золото взаимодействовать с водой? (Нет). 
Почему? (В ЭХ ряду после водорода) .Медь, ртуть, серебро, платина, золото с водой не реагируют! 
Au + H2O → реакция не идет 
Запомните! Металлы, стоящие в электрохимическом ряду напряжений до алюминия (включительно) образуют с водой гидроксиды, от алюминия до свинца – оксиды. Остальные с водой не реагируют. 
2.2.2. Взаимодействие металлов с растворами кислот. 
Мg + 2HCl → Мg Cl2 + H2 ↑; 
Запомните! Металлы стоящие в электрохимическом ряду напряжений до водорода могут вытеснять водород из растворов кислот. Металлы стоящие в электрохимическом ряду напряжений после водорода не могут вытеснять водород из растворов кислот.
Cu + H2SO4 → не реагирует. 
Какой же вывод можно сделать из этого?  С помощью преподавателя находят правильные ответы на поставленные вопросы, делают выводы.

Итак, ряд поправок: 
1. правило соблюдается, если в реакции металла с кислотой образуется растворимая соль; 
2. концентрированная серная кислота и азотная кислота любой концентрации реагируют с металлами по особому, при этом водород не образуется; 
3. на щелочные металлы правило не распространяется, т.к. они легко взаимодействуют с водой. 
Вывод: из уравнений реакций видно, что в них окислителями являются ионы водорода и ионы неметаллов, а атомы металлов – восстановители. 
2.2.3Взаимодействие металлов с растворами солей. 
Показываем, какие металлы вытесняют из солей по ряду напряжений металлов.
Fe + CuSO4 → Cu + FeSO4  

Запомните! В электрохимическом ряду напряжений металл, стоящий левее, может вытеснять из растворов солей металл, стоящий правее (записываем в тетрадь). 
Исключение: металлы до магния не могут вытеснять другие металлы из растворов солей, так как в первую очередь реагируют с водой, образуя щелочи. 

3.Свойства алюминия: Главное, ребята, вес удельный мой,

Потому в дюралях я главный составной,

Назван я «крылатым», так как самолёты

Надежно, легко отправляю в полёты.

« Я металл, серебристый и лёгкий,

И зовусь самолётный металл,

И покрыт я оксидною плёнкой,

Чтоб меня кислород не достал».

Взаимодействие с кислородом.
4Al + 3O2 → 2Al2O3;  (при нагревании)

Взаимодействие с галогенами.
2Al + 3Br2 → 2AlBr3; (при нагревании)
Взаимодействие с серой.
Al + 3S = Al 2S(при нагревании)

Взаимодействие с азотом

Al N= 2Al N (при нагревании)

С водородом непосредственно не реагирует.

Поскольку алюминий проявляет амфотерные свойства, то он реагирует и с кислотами и с щелочами, образуя соли. Является активным металлом, поэтому также реагирует и с водой. Почему в быту алюминий не проявляет свойства активного металла?» (поверхность алюминия покрыта оксидной пленкой).