понедельник, 1 февраля 2021 г.

 01.02.21 г. 108, 305, 306

ГРУППА 108

ТЕМА: Генетическая связь неорганических и органических веществ

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению взаимосвязи неорганических и органических соединений: свойствам органических и неорганических веществ, взаимосвязи различных классов соединений, уравнениям химических реакций, отражающих её.

Глоссарий

Генетическая связь – это связь между классами соединений, отражающая возможность превращения вещества одного класса в вещество другого класса.

Генетический ряд – это цепочка превращений веществ, которые имеют в составе один и тот же химический элемент.

Витализм – это устаревшее учение о существовании сверхъестественной «жизненной силы», которая наполняет органическую природу и определяет её свойства.

Фридрих Вёлер – великий немецкий врач и химик, синтезировал мочевину и щавелевую кислоту из неорганических соединений, первым получил карбид кальция, из которого под действием воды синтезировал ацетилен.

Синтез-газ – это смесь монооксида углерода и водорода, получают паровой конверсией или частичным окислением метана, газификацией угля. Используется для синтеза метанола, синтеза Фишера-Тропша.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.



ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ЧТЕНИЯ

До девятнадцатого века в химии господствовал витализм – учение о «жизненной силе». Виталисты считали, что «жизненная сила» отличает живое вещество от неживого. Поэтому синтез органических соединений из неорганических казался им принципиально невозможным.

В начале девятнадцатого века немецкий врач и химик Фридрих Вёлер опроверг теорию витализма. Из неорганических веществ он получил мочевину и щавелевую кислоту.

В 1828 году Ф. Вёлер при нагревании цианида аммония неожиданно для себя получил мочевину – вещество, которое образуется при метаболизме белков у млекопитающих и рыб. Ранее, в 1824 году, Ф. Вёлер получил щавелевую кислоту из дициана. Дициан – бесцветный ядовитый газ со слабым запахом. Его получают в электрической дуге при взаимодействии углерода с азотом. При гидролизе дициана в кислой среде образуется щавелевая кислота.

В лабораторной практике для получения метана и ацетилена используют карбиды – соединения углерода с металлами. Их получают при реакции оксидов кальция и алюминия с коксом. Карбид алюминия получают также прямой реакцией алюминия с углеродом. При взаимодействии с водой карбида кальция выделяется ацетилен, а карбида алюминия – метан. Реакции взрывоопасны!

В промышленных масштабах получают метанол из неорганических веществ – смеси монооксида углерода, углекислого газа и водорода. Эта смесь носит название синтез-газ. Процесс ускоряют катализаторы из оксида цинка или меди.

На основе полученных органических веществ можно синтезировать неисчислимое множество соединений. Из ацетилена получают бензол, ацетальдегид, акрилонитрил, виниловые эфиры, винилхлорид, винилацетилен. Метан является предшественником нитрометана, ацетилена, хлороформа, фреонов, метанола и синтез-газа. Из метанола синтезируют формальдегид, метилтион, метиламин, диметиланилин, винилацетат, диметиловый эфир, винилметиловый эфир.

Вышеприведенные синтезы иллюстрируют генетическую связь между классами органических веществ. Термин генетическая связь означает, что вещество одного класса может превращаться в вещество другого класса.

Генетическая связь записывается в виде генетических рядов – цепочек превращений веществ, имеющих в составе один и тот же химический элемент. Генетические ряды органических веществ очень разветвленные и сложные, в чем вы убедились на примере ацетилена, метанола, метана.

Генетические ряды неорганических веществ намного проще, потому что неорганические вещества делятся на меньшее число классов.

Генетический ряд металлов, образующих растворимые гидроксиды, представлен последовательностью реакций: из простого вещества получают основный оксид, затем гидроксид, затем соль. Помните, что у металлов, образующих нерастворимые в воде гидроксиды, генетический ряд выглядит несколько иначе: за оксидом следует соль, и только затем гидроксид.

Генетический ряд неметаллов аналогичен таковому металлов. Простое вещество образует кислотный оксид, затем кислоту и, наконец, соль.

Теперь вы знаете, что между генетическими рядами органических и неорганических соединений нет чётких границ, и можете обосновать это на примере синтеза мочевины, щавелевой кислоты, метана, ацетилена, метанола.

Не стоит забывать, что существует и обратный путь от органических веществ к неорганическим. Так, в реакции горения все органические вещества окисляются до углекислого газа и воды. При окислении щавелевой кислоты перманганатом калия в кислой среде она образует углекислый газ. Под действием высоких температур метан разлагается на углерод и водород. Последняя реакция – способ получения водорода.

В клетках живых организмов постоянно происходит синтез и распад органических соединений. В ходе фотосинтеза в хлоропластах растений из воды и углекислого газа образуется глюкоза. В клетках млекопитающих углеводы и жиры окисляются до воды и углекислого газа, а белки распадаются с образованием мочевины.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Решение задачи на множественный выбор.

Условие задачи: Выберите верные генетические ряды и запишите их номера.

1.   Cu -> CuO -> Cu(OH)2 -> CuSO4

2.   Al -> Al4C3 -> CH4 -> CH3Cl -> CH3OH

3.   Ag2O -> [Ag(NH3)2]OH -> CH3COOAg

4.   CaC2 -> CH4 -> CH3Cl -> CH3CH2CH3

Решение:

Первый вариант неверный, потому что гидроксид меди нерастворим в воде и может быть получен только реакцией обмена соли меди и щелочи.

Второй вариант верный.

Третий вариант верный.

Четвертый вариант неверный, потому что метан получают гидролизом карбида алюминия. Карбид кальция под действием воды образует ацетилен.

2.Решение задачи на вписывание формул.

Условие задачи: Введите формулы пропущенных веществ в генетическом ряду.

Al4C3 -> (1) -> CH3Cl -> (2) -> C2H4 -> (3) -> OHCH2CH2OH

Решение:

При гидролизе карбида алюминия образуется метан (1). Галогенированный метан взаимодействует с металлическим натрием (синтез Вюрца) и образует этан (2). Этилен получают дегидрированием этана. Далее под действием пероксибензойной кислоты этилен превращается в окись этилена (3). При гидролизе этиленоксида образуется этиленгликоль.

108 ТЕМА 2: Химия и производство. Химическая промышленность и химические технологии. Сырье для химической промышленности. Вода в химической промышленности.

Определение

Химическая промышленность — это отрасль народного хозяйства, производящая продукцию на основе химической переработки сырья.

Основой химического производства является химическая технология — это наука о наиболее экономичных методах и средствах массовой химической переработки сырья (природных материалов) в продукты потребления и промежуточные продукты, применяемые в различных отраслях народного хозяйства. Слово технология образовано из греческих корней технос – "мастерство", "искусство" и логос – "наука", учение. Химическая технология непосредственно связана с химией. Другими словами:

Определение

Химическая технология - наука о способах производства промышленных продуктов посредством химических реакций. 

Главная задача химической технологии — производство разнообразных веществ и материалов с определенным комплексом заданных механических, физических, химических или биологических свойств.

Знание общих закономерностей протекания химических реакций позволяет правильно определить условия, при которых тот или иной процесс протекает с максимальным выходом.

Структура химической промышленности 

В химической и нефтехимической отрасли России работает около 8 тыс. предприятий, в которых сконцентрировано около 7% основных фондов всей промышленности страны. Химический комплекс России является базовым сегментом экономики. Химическая промышленность имеет сложный многоотраслевой состав. Традиционно она подразделяется на горнохимическую отрасль (производит добычу и первичную переработку химического сырья — апатитов, фосфоритов, серы, каменных солей, нефти, газа, угля); основное химическое производство и производство (переработку) резиновых и пластмассовых изделий (использует пластики и каучуки в качестве полуфабрикатов). 

 

В свою очередь, основное химическое производство включает:

  • производство основных химических веществ или химию органического синтеза (удобрений, синтетического каучука, пластмасс и синтетических смол и др.);
  • производство ПАВ (поверхностно-активных веществ);
  • производство фармацевтической продукции;
  • производство красок;
  • производство искусственных и синтетических волокон;
  • производство химических средств защиты растений.

Существует также несколько иная классификация химического производства, включающая, помимо горно-химической отрасли, основную химию, химию органического синтеза (производство основных органических веществ), химико-фармацевтическую промышленность и производство бытовой химии. 

В данной классификации производство синтетических волокон, а также лаков и красок относится к химии органического синтеза.

В любом случае, разделение по отраслям является достаточно условным, поскольку многие современные предприятия-холдинги производят разные виды продукции с целью комплексного использования сырья (пример холдинг "Титан").

ГРУППА 305

ТЕМА:Зависимость  растворимости газов, жидкостей и твердых веществ от различных факторов.

Это интересно. ( Сообщения учащихся ) Наш организм состоит на 65 % из воды, если перевести проценты в литры то получиться , что в человеке массой 65 кг. Содержится 40 литров воды. Из них 25 л. Внутри клеток, 15 – в составе внеклеточных жидкостей. Мы выделяем 1,5 л слюны, 2,5 л желудочного сока, 0,7 сока поджелудочного и 3л кишечных соков.

Мозг человека содержит -81%, Почва -20 %,

Вода –это распределитель солнечной энергии на земле, главнейший творец климата, аккумулятор тепла .Рисунок 1

II. Вода- универсальный растворитель. Она растворяет многие газообразные (демонстрируем- минеральную газированную воду), жидкие (уксусная кислота), твердые (сахар) вещества. Но разве все растворы нам полезны. Так ,дождевая вода, растворяя содержащиеся в воздухе оксиды серы (II), углерода, азота, выпадает в виде кислотных дождей.

Влияние условий на растворимость

Для определения качественной растворимости часто используется эмпирическое правило «подобное растворяется в подобном». Это правило разные источники объясняют немного по-разному: полярные вещества растворяются в полярных растворителях, вещества имеющие гидроксильные группы хорошо растворяются в растворителях с гидроксильными группами и т. п.

Растворимость зависит от

  • растворяемого вещества,
  • растворителя,
  • температуры,
  • давления,
  • наличия в растворителе других веществ.

Растворимость большинства газов растет с ростом давления и уменьшается с ростом температуры. Для твёрдых и жидких веществ влияние давления на растворимость менее значимо, чем для газов. Температура имеет различное влияние на различные системы «растворяемое вещество — растворитель», но в большинстве случаев при увеличении температуры растёт растворимость (обратной зависимостью обладают, например, многие соли кальция). Так как растворяемое вещество часто увеличивает температуру кипения растворителя, растворимость при атмосферном давлении может быть измерена и выше температуры кипения растворителя. При повышенном давлении и температуре растворимость может сильно увеличиваться (например, в воде при высоком давлении и температуре относительно хорошо растворяются углеводороды и кварц, которые почти нерастворимы при обычных условиях).

Наличие в растворителе других веществ может сильно влиять на растворимость. Примеры:

  1. добавление солей в водный раствор неполярных веществ может привести к выделению неполярного вещества в осадок, за счет эффекта высаливания,
  2. наличие растворённого кислорода сильно влияет на растворимость ртути в воде за счет эффектов поверхностного окисления,
  3. наличие небольшого количества влаги в абсолютном этаноле может сильно изменить растворимость неполярных веществ.

Закрепление изученного материала .№1«Тест» 1. Какое из веществ является практически нерастворимым? а) нитрат серебра; б) сульфат бария; в) гидроксид кальция; г) хлорид натрия.

 2. Как изменяется растворимость гидроксида кальция в воде при повышении температуры? а) понижается; б) остается постоянной; в) повышается; г) сначала повышается, а затем понижается. 

3. Увеличение растворимости газообразных веществ, как правило, не зависит от: а) температуры и природы растворяемого вещества; б) температуры и давления; в) природы растворяемого вещества и давления; г) перемешивания и освещения.

 4. С понижением температуры растворимость какого вещества возрастает? а) HCl, б) KI; в) Cu(OH)2; г) AgNO3.

 5. Все растворимые вещества перечислены в ряду: а) CuSO4, AgNO3, Cu(OH)2; б) KI, Мg(NO3)2, FeCl3; в) Cа(OH)2, FeCl2, AgCl; г) AgI, KNO3, Cа(OH)2.

 6. Растворимость веществ с повышением температуры возрастает в ряду: а) КОН и О2; б) Н2S и KNO3; в) NaCl и НI; г) Na2CO3 и N2. 

Задание №2 «Выбери меня» – Из веществ, формулы которых NaI, BaSO4, HI, KOH, Fe(OH)3, Na2CO3, выберите - растворимые вещества; - нерастворимые вещества.

ГРУППА 306

ТЕМА: ТЕМА:Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.   Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

Причины образования химической связи

Известно, что электронные оболочки, содержащие восемь внешних электронов, два из которых находятся на s-орбитали, а шесть — на р-орбиталях, обладают повышенной устойчивостью. Они соответствуют инертным газам: неону, аргону, криптону, ксенону, радону (найдите их в периодической таблице). Еще более устойчив атом гелия, содержащий всего два электрона. Атомы всех других элементов стремятся приблизить свою электронную конфигурацию к электронной конфигурации ближайшего инертного газа. Это возможно сделать двумя путями — отдавая или присоединяя электроны внешнего уровня.

  1. Атому натрия, имеющему всего один неспаренный электрон, выгоднее его отдать, тем самым атом получает заряд (становится ионом) и приобретает электронную конфигурацию инертного газа неона.
  2. Атому хлора до конфигурации ближайшего инертного газа недостает всего одного электрона, поэтому он стремится приобрести электрон.

Каждый элемент в большей или меньшей степени обладает способностью притягивать электроны, которая численно характеризуется значением электроотрицательности. Соответственно, чем больше электроотрицательность элемента, тем сильнее он притягивает электроны и тем сильнее выражены его окислительные свойства.

Стремление атомов приобрести устойчивую электронную оболочку объясняет причину образования молекул.

Определение

Химическая связь — это взаимодействие атомов, обусловливающее устойчивость химической молекулы или кристалла как целого.

В случае если разница электроотрицательностей элементов будет велика, произойдет не просто смещение электронной плотности, а полная передача электрона от одного атома к другому. Рассмотрим это на примере фторида натрия NaF. Как мы видели ранее, атом натрия стремится отдать один электрон, а атом фтора готов его принять. Это легко осуществляется при их взаимодействии, которое сопровождается переходом электрона.

 

При этом атом натрия полностью передает свой электрон атому фтору: натрий лишается электрона и становится заряженным положительно, а хлор приобретает электрон и становится заряженным отрицательно.

Определение

Атомы и группы атомов, несущие на себе заряд, называют ионами.

В образовавшейся молекуле — хлориде натрия  — связь осуществляется за счет электростатического притяжения разноименно заряженных ионов. Такую связь называют ионной. Она реализуется между типичными металлами и неметаллами, то есть между атомами с сильно различающимися значениями электроотрицательности.

Определение

Ионная связь образована за счет сил электростатистического притяжения между разноименно заряженными ионами — катионами и анионами.

Ионная решетка

Эту решетку образуют все вещества с ионным типом связи — соли, щелочи, бинарные соединения активных металлов с активными неметаллами (оксиды, галогениды, сульфиды), алкоголяты, феноляты, соли аммония и аминов. В узлах решетки — ионы, между которыми существует электростатическое притяжение. Ионная связь очень прочная.

Примеры: КОН, СаСО, СНСООК, NHNO, [CHNH]Cl, СНОК. 

Свойства ионных кристаллов:

  • твердые, но хрупкие;
  • отличаются высокими температурами плавления;
  • нелетучи, не имеют запаха;
  • расплавы ионных кристаллов обладают электропроводностью;
  • многие растворимы в воде; при растворении в воде диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.