четверг, 1 сентября 2022 г.

01.09.22 г. Четверг. Группы 506,405

 01.09.22 г. Четверг. Группы 506,405

Здравствуйте, уважаемые студенты, заведите, пожалуйста тетрадь для конспектов по химии, другую- по биологии, записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения.)

Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!


ГРУППА 506 ХИМИЯ 1,2,3

ТЕМА 1: Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Моделирование химических процессов.

Прежде чем приступить к любой работе и получить определённый результат, человек выбирает наиболее эффективные и доступные способы и приёмы выполнения её, инструмент и приспособления, которые можно использовать для этого, операции, которые необходимо совершить.

Совокупность приёмов и операций практического и теоретического освоения действительности и определяет понятие «метод».


Рассмотрим научные методы познания химии, т.е. методы познания, которые используются для изучения веществ и химических явлений.


Различают 2 уровня научного познания: эмпирический и теоретический.


Методы эмпирического уровня познания


Эмпирический уровень - характеризуется исследованием реально существующих объектов. На этом уровне происходит процесс накопления информации об этих объектах с помощью следующих методов: наблюдение, измерение, постановка экспериментов.


В это же время осуществляется первичная систематизация получаемых фактических данных в виде описания, таблиц, схем, графиков и т.д.


Познакомимся с каждым из этих методов отдельно.


Наблюдение – это первоначальный метод эмпирического познания, позволяющий получить первичную информацию об объекте изучения.


Наблюдение является целенаправленным, планомерным, активным методом научного познания: оно ведётся для решения заранее поставленных задач, строго по составленному исследователем плану, согласованному с поставленными задачами и сопровождается активными действиями исследователя. Результаты научных наблюдений фиксируются в виде описания признаков наблюдаемого объекта, таблиц, схем и т.д. Всё это является базисом науки, опираясь на который учёные создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным признакам, проводят классификацию, выявляют закономерности.

Наблюдения могут быть непосредственными, воспринимаемыми органами чувств человека, и опосредованными, которые проводятся с использованием технических средств наблюдения: микроскопов, телескопов и др.

В процессе наблюдения могут совершаться открытия новых явлений, позволяющих обосновать какую-либо научную гипотезу или подтвердить какое-либо положение известной теории.

Из всего сказанного следует, что наблюдение является важнейшим методом научного познания, позволяющим собрать обширную информацию об окружающем мире.


Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он отличается от метода наблюдения тем, что в ходе эксперимента исследователь может изменять условия (давление, температуру, напряжение и т.д.), устранять побочные факторы, затрудняющие процесс исследования. Эксперимент может повторяться несколько раз для получения наиболее достоверных результатов.


Условия научного эксперимента: целенаправленность, наличие базы в виде исходных теоретических положений, наличие плана проведения эксперимента, наличие технических средств, наличие специалистов необходимого уровня квалификации.


В зависимости от характера поставленных задач, решаемых в ходе эксперимента, последние подразделяются на исследовательские и проверочные.


Исследовательские эксперименты направлены на обнаружение новых, неизвестных науке свойств изучаемого объекта. Результатом такого эксперимента могут быть выводы, изменяющие представления об этом объекте.


Проверочные эксперименты служат для проверки или подтверждения тех или иных теоретических положений.


Следующий эмпирический метод познания – измерение.


Измерение – это процесс определения количественных значений свойств изучаемого объекта с помощью специальных технических устройств.


Измерения бывают прямые и косвенные.

Прямые измерения – это такие измерения, при которых значение измеряемой величины выдаётся непосредственно измерительным прибором.

При косвенном измерении искомое значение величины определяют по известной математической зависимости (по формуле), используя для этого данные, полученные при прямых измерениях.


В процессе измерения не всегда требуется участие человека. Измерение может быть включено в работу автоматической информационно-измерительной системы, которая строится на базе электронно-вычислительной техники.


Методы теоретического уровня познания


Идеализация – представляет собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть исключены из рассмотрения какие-то свойства, признаки, стороны объектов. Например, в механике идеализация материальной точки как тела, лишенного размеров и массы. Такой прием удобен при описании движения, в том числе атомов и молекул.


Идеализация используется тогда, когда реальные объекты достаточно сложны для имеющихся средств математического анализа, когда некоторые свойства затемняют существо протекающих в объекте процессов.


Роль идеализации как метода научного познания заключается в том, что получаемые на его основе теоретические положения, можно использовать для исследования реальных объектов или явлений.


Формализация - заключается в использовании специальной символики, позволяет отвлечься от изучения реальных объектов и оперировать вместо этого символами (знаками). Достоинством формализации является возможность проведения исследований без обращения к какому-либо объекту, кроме этого обеспечивается краткость и четкость записи научной информации.


Методы, применяемые на эмпирическом и теоретическом уровнях познания


Анализ и синтез.


Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью изучения их по отдельности.


Под синтезом понимают соединение составных частей объекта (мысленно или реально) с целью изучения его как единого целого. Для изучения объекта как единого целого необходимо рассматривать его составные части в совокупности, в единстве. В процессе синтеза производится соединение воедино составных частей изучаемого объекта. Анализ и синтез успешно используются в сфере мыслительной деятельности человека, т.е. в теоретическом познании.


Моделирование – основано на изучении моделированного объекта. Модель строится по подобию оригинала, на ней воспроизводят, свойственные оригиналу процессы и полученные сведения переносятся на моделируемый объект – оригинал.


Различают несколько видов моделирования:


Мысленное. К нему относятся самые различные мыслительные представления в форме тех или иных воображаемых моделей.


Физическое. Оно характеризуется физическим подобием между моделью и оригиналом.


Символическое – связано с построением графиков, схем.


Численное моделирование на ЭВМ.


Моделирование как метод познания бывает единственно необходимым для исследования некоторых явлений.


Таким образом, все названные методы научного познания являются важными и необходимыми для познания окружающего мира.

  ТЕМА 2. Основные понятия химии. Вещество. Атом. Молекула. Химический элемент. Аллотропия. Простые и сложные вещества. Качественный и количественный состав веществ.

1.Вещество. Атом. Молекула. Химический элемент. Аллотропия.

Химия– это наука о веществах и процессах их превращения, при которых происходит изменение состава и структуры.

Вещество - это каждый отдельный вид материи, обладающий при данных условиях определенными физическими свойствами (вода, железо, сера, известь, кислород). Природные вещества представляют собой смеси, состоящие иногда из большого числа различных веществ.

Основой всей химической науки являются атомно-молекулярное учение, закон сохранения материи, периодический закон Д.И.Менделеева и теория химического строения.

Создание атомно-молекулярного учения относится к концу 18 - началу 19 вв., когда в химию были введены количественные методы исследования.

Огромный вклад  в создание этой теории  внес русский ученый М.В.Ломоносов.

Основные положения  заключаются в следующем:

1. Вещества состоят из молекул; молекулы различных веществ отличаются между собой химическим составом, размерами, физическими и химическими свойствами.

2. Молекулы находятся в непрерывном движении; между ними существует взаимное притяжение и отталкивание. Скорость движения молекул зависит от агрегатного состояния веществ.

3. При физических явлениях состав молекул  остается неизменным, при химических  - претерпевают  качественные и количественные изменения и из одних молекул образуются другие.

4. Молекулы состоят из атомов. Атомы характеризуются определенными размерами и массой. Свойства атомов одного и того же элемента одинаковы  и отличаются от свойств атомов других элементов.

При химических реакциях атомы не претерпевают качественных изменений.

Атом – это электронейтральная частица, состоящего из положительно заряженного ядра и отрицательно заряженных электронов. Атом – наименьшая частичка химического элемента, предел химической делимости материи. Атом- носитель свойств химического элемента.

Атомы могут  взаимодействовать между собой, образуя молекулы.

Валентность – это способность атомов элементов образовывать химические связи. Молекула – это система,  состоящая из связанных  между собой атомов.

Молекула – это наименьшая  частица вещества, обладающая его химическими свойствами.

Молекула  способная к самостоятельному существованию и состоит из одинаковых или различных атомов, соединенных в одно целое химическими связями.

Химический элемент – это совокупность атомов с одинаковым положительным  зарядом ядра.

Каждый химический элемент обозначают соответствующим символом. Символ Cu  обозначает  атом меди, H- один атом водорода.

Состав веществ обозначают химическими формулами, в которых  символами указывают химические элементы, входящие в состав вещества, цифровыми индексами справа – число атомов каждого элемента. В состав молекулы серной кислоты H2SO4  входят два атома водорода, один атом серы и четыре атома кислорода.

Каждая химическая связь в формуле обозначается черточкой.

Способность химического элемента  образовывать несколько простых веществ называется аллотропией.

А различные простые вещества, образованные одним элементом, - аллотропными видоизменениями, или аллотропными модификациями.

Явление аллотропии обусловлено несколькими причинами:

  1. Образованием молекул с различным числом атомов (кислород О2 и озон О3 фосфор  двухатомный Р 2 и четырехатомный Р4)
  2. образованием кристаллов различных модификаций  (углерод в виде  графита и алмаза).

2. Простые и сложные вещества. Качественный и количественный состав веществ. 

Простые вещества – это вещества, образованные одним химическим элементом.

Один и тот же химический элемент может образовывать несколько простых веществ.

Вещества, образованные из двух и более химических элементов, называют сложными. Сложных веществ гораздо больше, чем простых.

Различают в качественный и количественный состав веществ.

Качественный состав – это совокупность химических элементов и (или) атомных группировок, составляющих данное химическое вещество.

Количественный состав – это показатели, характеризующие количество или число атомов того или иного химического элемента и (или) атомных группировок, образующих данное химическое вещество.

Состав веществ отображают посредством химической символики.

 

Контрольные вопросы:

1.Какая связь между понятием «атом» и «молекула»? В чем различие между ними?

2.Чем отличается простое вещество от химического элемента?

  ТЕМА 3. Химические знаки и формулы. Относительные атомная и молекулярная массы. Количество вещества.

ТЕМЫ Химические знаки и формулы. Относительные атомная и молекулярная массы. Количество вещества. 

 

Химический знак (символ) – несет значительную информацию. Он обозначает название элемента, один его атом, один моль атомов этого элемента. По символу химического элемента можно определить его атомный номер и относительную атомную массу.

 

Химическая формула – это способ отображения химического состава вещества. Она обозначает название вещества, одну молекулу его, один моль этого вещества. По химической формуле можно определить качественный состав вещества, число атомов и количество вещества каждого элемента в одном моле вещества, его относительную молекулярную и молярную массу.

 

Формулы вещества составляют на основании еще одного важнейшего понятия в химии – валентности.

Валентность – это способность атомов одного химического элемента соединятся со строго определенным числом атомов другого химического элемента.

 


Широко используются несколько видов химических формул:

  1. Простейшая (эмпирическая) формула показывает качественный состав и соотношения, в которых находятся частицы, образующие данное вещество.
  2. Молекулярная (истинная) формула показывает качественный состав и число составляющих вещество частиц, но не показывает порядок связей частиц в веществе, т. е. его структуру.

  3. Графическая формула отражает порядок соединения атомов, т. е. связи между ними.

Относительная атомная масса ( Аrхимического элемента – это величина, показывающая отношение средней массы атома природной изотопной смеси элемента к 1/12 массы атома углерода:

                        Единая углеродная атомная единица массы (а. е. м.) :

                      

     это единица измерения масс атомов, молекул и элементарных частиц. За атомную единицу массы принята 1/12 массы нуклида углерода 12С. Масса этого нуклида в единицах СИ равна 1,9927 × 10-26 кг.

                        

Относительная атомная масса – одна из основных характеристик химического элемента.

Относительная молекулярная масса ( Ar ) равна сумме относительных атомных масс всех атомов, образующих молекулу вещества.

Количество вещества (n или v) характеризуют числом атомов, молекул или других формульных единиц данного вещества.


В Международной системе СИ за единицу количества вещества принят моль.


Моль – это количество вещества, содержащее столько же формульных единиц, сколько атомов содержат 0,012 кг изотопа углерода   12c .




Массу одного моля называют молярной массой и обозначают буквой М:

           M=Mr*1  г/моль.

ТЕМА 4:Законы стехиометрии

Основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией. Стехиометрия включает в себя законы Авогадро, постоянства состава, кратных отношений, Гей-Люссака, эквивалентов и сохранения массы.

В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы (М. В. Ломоносов, 1748, А. Лавуазье, 1789).

Закон сохранения массы веществ : Масса реагирующих веществ равна массе продуктов реакции.

Модель 1.4. Стехиометрические коэффициенты.

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст): Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.

Такие соединения называют дальтонидами или стехиометрическими в отличие от бертолидов , состав которых зависит от способа получения. Такие соединения состоят не из молекул, а из атомов или ионов.

Закон кратных отношений (Д. Дальтон): Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

При взаимодействии азота с кислородом образуются пять оксидов. На 1 грамм азота в образующихся молекулах приходится 0,57, 1,14, 1,71, 2,28, 2,85 грамм кислорода, что соответствует отношением 2:1, 1:1, 2:3, 1:2, 2:5 в этих оксидах; их составы N 2O, NO, N 2O 3, NO 2, N 2O 5.

Закон эквивалентов (И. Рихтер): В молекулярных соединениях массы составляющих их элементов относятся между собой как их эквиваленты.

Химический эквивалент – реальная или условная частица вещества, способная соединиться и заместить 1 моль атомов водорода в реакциях присоединения и замещения или принять (отдать) 1 моль электронов в окислительно-восстановительных реакциях.

Химический эквивалент




Закон простых объемных отношений (Ж. Гей-Люссак): При равных условиях объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов как небольшие целые числа.

Так, в реакции образования аммиака из простых веществ отношение объемов водорода, азота и аммиака составляет 3:1:2.

Закон Авогадро : В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.

Из закона Авогадро вытекают два следствия:

  • Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем.
     
  • Относительная плотность одного газа по другому равна отношению их молярных масс.

Число Авогадро – число частиц в моле любого вещества; N A = 6,02∙10 23 моль –1.

Молярный объем – объем моля любого газа при нормальных условиях; равен 22,4 л∙моль –1.

Молярная масса (M) – масса одного моля вещества, численно совпадающая с относительными массами атомов, ионов, молекул, радикалов и других частиц, выраженных в г∙моль –1.



Решение задачи


1. Определите количество вещества атомного борасодержащегося  в тетраборате натрия Na2B4O7 массой 40,4 г.

Дано: m(Na2B4O7)=40,4 г.

Найти:  ν(B)=?

РешениеМолярная масса тетрабората натрия составляет 202 г/мольОпределяем количество вещества Na2B4O7:

ν(Na2B4O7)= m(Na2B4O7)/ М( Na2B4O7) = 40,4/202=0,2 моль.

Вспомнимчто 1 моль молекулы тетрабората натрия содержит 2 моль атомов натрия,  4 моль атомов бора и 7 моль атомов кислорода (смформулу тетрабората натрия). Тогда количество вещества атомного бора равноν(B)= 4  ν (Na2B4O7)=4 • 0,2 = 0,8 моль.

(Напоминание:Количество вещества принято обозначать греческой буквой ν [ню]. В системе СИ единица измерения количества вещества называется моль. Один моль вещества содержит столько же структурных частиц, сколько атомов содержится в 12 г углерода, а именно 6*1023 частиц.((6 умножить на 10 в двадцать третьей степени))


 




ГРУППА 405 химия

Тема: 1. Общие способы получения металлов. Понятие о металлургии.Сплавы.

Тема 2. Неметаллы, строение атомов. Неметаллы - простые вещества.

Основные способы получения металлов: пирометаллургия, гидрометаллургия, электрометаллургия.
Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.
Например, медь восстанавливают из куприта Cu2O прокаливанием с углем (коксом):
SnО2+ 2С = Sn + 2СО↑; Cu2O + С = 2Cu+ СО ↑.
Алюминотермия и магниетермия способы получения металлов, основанные на восстановлении металлов из их соединений (оксидов, галогенидов и др.) более активными металлами (Al и Mg). Например:
tо
2Al + 3BaO → 3Ba + Al2O3
TiCl4 + 2Mg → Ti + 2MgCl2
Металлотермические опыты получения металлов впервые осуществил русский ученый Н. Н. Бекетов в XIX в.
Восстановительные свойства металлов проявляются при взаимодействии с неметаллами. Например:
H2O
2Al + 3I2 → 2AlI3 (инициатором реакции является вода)
to
2Fe + 3Cl2 → 2FeCl(реакция горения)
2Na + S → Na2S (реакция идет самопроизвольно при смешивании серы и натрия)
Основными восстановителями для получения металлов являются С, СО, Н2.
Например:

Кроме восстановителей для получения металлов ещё используют электрохимический способ – электролиз.
Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путём электролиза.
Сущность электролиза заключается в выделении из электролита частиц вещества при протекании через электролитическую ванну постоянного тока и осаждении их на погруженных в ванну электродах. Цель процесса - получение возможно более чистых незагрязнённых примесями металлов.

Рис. 6. Процессы, протекающие при электролизе.
Схема электролизной ванны: 1 - ванна, 2 - электролит, 3 - анод, 4 - катод, 5 - источник питания
ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ
Задания необходимо решать с использование ряда напряжения металлов:

Задание 1: Составьте уравнение реакций взаимодействия металлов с кислотами, расставьте коэффициенты и найдите их сумму.
Al + Н2
Fe + Н2
Алюминий и железо стоят левее водорода в ряду напряжения металлов, поэтому могут вытеснить водород из разбавленных кислот. При прохождении реакции наблюдаем выделение водорода в виде мелких пузырьков.
Коэффициенты расставляем, уравнивая количество атомов одного элемента до и после стрелки.
Сумма коэффициентов в уравнении с алюминием : 9 (2+3+1+3).
В уравнении с железом: 4 (1+1+1+1).

Сплавы металлов и их классификация

Одним из первых металлов, который человек стал применять для своих нужд, была медь. Но ещё в III тысячелетии люди обнаружили, что медь, сплавленная с оловом, позволяет делать более прочное оружие, долговечную посуду. Материал, полученный при сплавлении меди с оловом, получил название «бронза». Это был первый сплав, изготовленный человеком.

Сплавом называют искусственный материал с металлическими свойствами, состоящий из двух или более компонентов, из которых, по крайней мере, один является металлом.

В зависимости от количества компонентов различают двойные (бинарные), тройные и многокомпонентные сплавы. Сплавы могут иметь однородную структуру (гомогенные сплавы), а также состоять из нескольких фаз (гетерогенные сплавы). В зависимости от своих свойств сплавы подразделяются на легкоплавкие, тугоплавкие, жаропрочные, высокопрочные, твердые, коррозионно-устойчивые. По предполагаемой технологии обработки различают литейные (изделия производят путём литья) и деформируемые (обрабатывают путём ковки, проката, штамповки, прессования) сплавы.

Чёрные металлы и сплавы на их основе

В зависимости от природы металла, составляющего основу сплава, различают чёрные и цветные сплавы. В чёрных сплавах основным металлом является железо. Самыми распространенными из чёрных сплавов являются сталь и чугун. К чёрным металлам относятся железо, а также марганец и хром, которые входят в состав чёрных сплавов.

Чугун

Чугун – сплав на основе железа, содержание углерода в котором превышает точку предельной растворимости углерода в расплаве железа (2,14%). При остывании сплава, углерод кристаллизуется в виде отдельных включений цементита и графита. Углерод придает чугуну твердость, но снижает пластичность сплава, поэтому чугун хрупкий. Чугун применяют для изготовления литых деталей (коленчатых валов, колёс, труб, радиаторов отопления, ванн, решеток ограждения), кухонной посуды (сковородок, чугунков, казанов).

Сталь

В стали содержание углерода значительно меньше. В низкоуглеродистых сталях количество углерода не превышает 0,25%, в высокоуглеродистой стали содержание углерода может достигать 2%. Самые первые стальные изделия появились 4000 лет назад. В настоящее время выплавляют стальные сплавы с различными свойствами. Это конструкционные, нержавеющие, инструментальные, жаропрочные стали.

Легирующие добавки

Для придания стали особых свойств в процессе её изготовления, вводят легирующие добавки. Легирующими добавками называют вещества, которые добавляют в сплав в определенном количестве для изменения механических и физических свойств материала.

Легированные стали

В зависимости от количества легирующих добавок различают низколегированную, среднелегированную и высоколегированную сталь. Марка стали обозначается с помощью букв и цифр. Буква указывает на химическую природу легирующей добавки, а цифра, стоящая после буквы – на примерное содержание этой добавки в сплаве. Если содержание добавки меньше 1%, то цифру не ставят. Цифры впереди букв показывают содержание углерода в сотых долях процента. Например, в стали марки 18ХГТ содержится 0,18 % С, 1 % Сr, 1 % Мn, около 0,1 % Тi.

Стали применяют для изготовления армирующих железнодорожных рельсов, дробильных установок, конструкций, турбин электростанций и двигателей самолётов, инструментов (пилы, сверла, резцы, зубила, фрезы), химической аппаратуры, деталей автомобилей, тракторов, дорожных машин, труб и много другого.

Цветные металлы и сплавы на их основе

К цветным металлам относят алюминий, цинк, медь, никель, олово, свинец и др. Сплавы на основе цветных металлов называют цветными. Это бронза, латунь, силумин, дюралюминий, баббиты и многие другие. В авиации широкое применение нашли легкие и прочные сплавы на основе алюминия и титана. Изделия из медных сплавов: бронзы и латуни, применяются в химической промышленности, для изготовления запорной аппаратуры: кранов, вентилей. Сплавы на основе олова и свинца используют для изготовления подшипников. Из мельхиора и нейзильбера – сплавов меди и никеля, изготовляют столовые наборы, монеты.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчет массовой доли металла в сплаве

Условие задачи: Кусочек нейзильбера массой 2,00 г поместили в раствор гидроксида натрия. В ходе реакции выделилось 0,14 л водорода (н.у.). Вычислите массовую долю цинка в сплаве. Ответ запишите в процентах с точностью до десятых долей.

Шаг первый: запишем уравнение реакции цинка с раствором гидроксида натрия:

Zn + 2NaOH → Na2ZnO2 + H2↑.

Один моль цинка вытесняет из щёлочи один моль водорода.

Шаг второй: найдём количество цинка, которое вытеснило 0,14 л водорода.

Для этого найдём в периодической таблице элементов Д.И. Менделеева молярную массу цинка: М(Zn) = 65 г/моль. При нормальных условиях 1 моль любого газа занимает объём, равный 22,4 л. Составим пропорцию:

65 г цинка вытесняет 22,4 л водорода;

х г цинка вытесняет 0,14 л водорода.

65 : х = 22,4 : 0,14, откуда х = (65·0,14) : 22,4 = 0,41 (г) – масса цинка в сплаве.

Шаг третий: найдём массовую долю цинка в сплаве:

ω = (0,41 : 2,00)*100 = 20,5 (%).

Ответ: 20,5

ТЕМА:Неметаллы. Особенности строения атомов. Неметаллы – простые вещества.


ПОЛОЖЕНИЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ-НЕМЕТАЛЛОВ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

Из более сотни известных химических элементов простые вещества неметаллы образуют 22 элемента, причем все они находятся в главных (А) подгруппах.

Элементы-неметаллы находятся в правом верхнем углу Периодической таблицы, в главных подгруппах выше диагонали бериллий – астат. Причем с увеличением номера главной подгруппы число неметаллов в ней закономерно увеличивается на один (рис. 1).

Рис. 1. Расположение неметаллов среди элементов подгрупп А (выделены красным)

ОСОБЕННОСТИ СТРОЕНИЯ АТОМОВ НЕМЕТАЛЛОВ

Неметаллические свойства связаны со способностью атомов элементов присоединять к себе электроны. Притяжение внешних электронов к ядру тем сильнее, чем меньше размеры атома и больше заряд ядра. В периоде с ростом заряда ядра от элемента к элементу радиус атома уменьшается, сильнее становится притяжение внешних электронов к ядру и неметаллические свойства усиливаются. Вместе с тем от периода к периоду радиус атома увеличивается из-за увеличения числа электронных слоев, и ядра этих атомов все слабее притягивают к себе внешние электроны. Поэтому с ростом номера периода в нем уменьшается количество элементов-неметаллов.

На внешнем электронном слое в атомах неметаллов большее число электронов, чем в атомах металлов. Электроотрицательность атомов неметаллов существенно выше, чем атомов металлов.

ОСОБЕННОСТИ СТРОЕНИЯ ЭЛЕМЕНТОВ VIII-A ПОДГРУППЫ

Элементы VIII-А подгруппы завершают каждый период.

Особенностью строения атомов неона, аргона, криптона, ксенона и радона является устойчивый восьмиэлектронный внешний слой (октет), а гелия – двухэлектронный (дуплет). При обычных условиях их простые вещества, как правило, не вступают в химические реакции и представляют собой одноатомные газы. Поэтому их часто называют инертными, или благородными, газами. Последнее название более целесообразно, так как известны некоторые соединения этих элементов (например, оксид ксенона, фторид радона и др.).

ИЗМЕНЕНИЕ СВОЙСТВ НЕМЕТАЛЛОВ В ГРУППАХ

В группах с увеличением заряда ядра увеличивается радиус атома, т. к. растет число электронных слоев в атоме. Следовательно, способность притягивать электроны, электроотрицательность и окислительные свойства уменьшаются.

В периодах же, наоборот, с увеличением заряда ядра электроотрицательность и окислительные свойства увеличиваются, т. к. уменьшается радиус атома.

Самый электроотрицательный элемент – это фтор. Поэтому он и самый активный неметалл.

Изменение некоторых свойств элементов неметаллов рассмотрено в таблице на рис. 2 на примере элементов третьего периода.

Свойства

Si

P

S

Cl

Порядковый номер

14

15

16

17

Число внешних электронов

4

5

6

7

Радиус атома в нм

0,117

0,111

0,104

0,099

Высшая степень окисления

+4 (SiO2)

+5 (Р2О5)

+6(SO3)

+7

(Cl2O7)

Низшая степень окисления

-4 (SiH4)

силан

-3

(PH3)

фосфин

-2

(H2S)

сероводород

-1

(HCl)

хлороводород

Неметаллический характер

усиливается

Рис. 2. Сравнение свойств неметаллов третьего периода

РАСПРОСТРАНЕННОСТЬ В ПРИРОДЕ

Распространенность неметаллов в космосе и на земле различна.

Самый распространенный элемент земной коры – кислород, он составляет примерно половину общей массы элементов, образующих земную кору (49,13 %). Кислород также является составной частью атмосферы, он занимает 21 % ее объема.

Вторым по распространенности на земле элементом является кремний. Его в земной коре 27,6 % по массе. Кремний с кислородом образует самые разнообразные природные соединения вследствие своего особенного родства с кислородом.

К распространенным элементам неметаллам следует отнести и азот. В земной коре его 0,01 % по массе, а в атмосфере – 78 % по объему.

Водород распространен в земной коре незначительно – всего 1 % по массе. Но во Вселенной он является господствующим элементом. Его особая роль в жизни Вселенной заключается в том, что водород является источником энергии, питающей Солнце и другие звезды.

В значительно меньших количествах, чем перечисленные элементы, в природе встречаются углерод, фосфор, сера. Но эти элементы наряду с кислородом, углеродом и водородом входят в состав живых организмов и выполняют важные биологические функции. Поэтому их называют биогенными элементами.

Подведение итогов урока

Из материалов урока вы узнали, почему химических элементов-неметаллов намного меньше, чем металлов, как различаются по строению атомы металлов и неметаллов, а также какими свойствами обладают неметаллические элементы.