вторник, 19 января 2021 г.

 19.01.20 г. 208,305,106,308 группы.

ГРУППА 208

ТЕМА: Глюкоза. Строение молекулы. Изомерия. Фи­зические свойства и нахождение в природе

В природе наиболее распространены углеводы - моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы). ВИДЕО "УГЛЕВОДЫ"

Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных.

 Например:

возможно и такое обозначение глюкозы и фруктозы:

 

Из этих формул следует, что моносахариды – это альдегидоспирты или кетоноспирты.

Строение глюкозы C6H12O6

ВИДЕО "ГЛЮКОЗА"

Экспериментально установлено, что в молекуле глюкозы присутствуют альдегидная и гидроксильная группы.

Видео. Распознавание глюкозы с помощью качественных реакций 

В результате взаимодействия карбонильной группы с одной из гидроксильных глюкоза может существовать в двух формах: открытой цепной и циклической.

В растворе глюкозы эти формы находятся в равновесии друг с другом.

Например, в водном растворе глюкозы существуют следующие структуры:

Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца. В α-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в β-глюкозе – в цис-положении. С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

Явление существования веществ в нескольких взаимопревращающихся изомерных формах было названо А. М. Бутлеровым динамической изомерией. Позднее это явление было названо таутомерией (от греческого tauto – «тот же самый» и meros – «часть».

В твёрдом состоянии глюкоза имеет циклическое строение. Обычная кристаллическая глюкоза – это α- форма. В растворе более устойчива β-форма (при установившемся равновесии на неё приходится более 60% молекул). Доля альдегидной формы в равновесии незначительна. Это объясняет отсутствие взаимодействия с фуксинсернистой кислотой (качественная реакция альдегидов). 

Для глюкозы кроме явления таутомерии характерны структурная изомерия с кетонами (глюкоза и фруктоза – структурные межклассовые изомеры)

и оптическая изомерия:

Физические свойства глюкозы:

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий):

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;

2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;

3) глюкоза есть в животных организмах;

4) в крови человека ее содержится примерно 0,1 %.


ГРУППА 305 (БИОЛОГИЯ)

ТЕМА 1.Фотосинтез (ПЛАСТИЧЕСКИЙ ОБМЕН).         ТЕМА 2Биологическое окисление( ЭНЕРГЕТИЧЕСКИЙ ОБМЕН)

Фотосинтез — важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на Земле.
Фотосинтез — это процесс образования органических соединений из диоксида углерода (CO2) и воды (H2O) с использованием энергии света.
51.jpg

Хлоропласты в клетках растений и складки цитоплазматической мембраны прокариот содержат зелёный пигмент — хлорофилл. Хлорофилл обладает особой химической структурой, которая позволяет ему улавливать кванты света. Молекула хлорофилла способна возбуждаться под действием солнечного света, отдавать свои электроны и перемещать их на более высокие энергетические уровни.
Пример:
этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет её. Электроны не падают обратно, а подхватываются молекулами переносчика электронов НАДФ+  (никотинамидадениндинуклеотидфосфата). При этом их энергия частично расходуется на образование АТФ.
Процесс фотосинтеза включает две последовательные фазы: световую и темновую.
Световая фаза
Световая фаза — это этап, на котором энергия света, поглощённая хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Она осуществляется на свету, в мембранах гран тилакоидов, при участии белков-переносчиков и АТФ-синтетазы.
Световая фаза фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды
 
На фотосинтетических мембранах гран хлоропластов происходят следующие процессы:
  • возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;
  • восстановление акцепторов электронов — НАДФ+ до НАДФН2;
  • фотолиз воды, происходящий при участии квантов света:
          2H2O4H++4e+O2.
  
Результатами световых реакций являются:
  • фотолиз воды с образованием свободного кислорода;
  • синтез АТФ;
  • восстановление НАДФ+ до НАДФН.
 
Обрати внимание!
В реакциях световой фазы фотосинтеза накапливается энергия в НАДФН и АТФ, которая тратится в процессах темновой фазы.
Синтез АТФ из АДФ за счёт энергии света — очень эффективный процесс: за одно и то же время в хлоропластах образуется в 30 раз (!) больше АТФ, чем в митохондриях.
 
Во время световой фазы образуются богатые энергией молекулы и ионы водорода, необходимые для темновой фазы фотосинтеза. Дальнейшие процессы фотосинтеза могут идти и без солнечного освещения.
Темновая фаза
Реакции темновой фазы фотосинтеза протекают независимо от света.
Темновая фаза — процесс преобразования CO2 в глюкозу с использованием энергии, запасённой в молекулах АТФ и НАДФН.
Эти реакции осуществляются в строме хлоропластов, куда из тилакоидов поступают богатые энергией вещества: НАДФН и АТФ, накопленные в реакциях световой фазы фотосинтеза.

Источник углерода (CO2) растение получает из воздуха через устьица.

Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина по имени его открывателя.

Результатом темновых реакций является превращение углекислого газа в глюкозу, а затем в крахмал.
 
Помимо молекул глюкозы в строме хлоропластов происходит образование аминокислот, нуклеотидов, спиртов.
 
Фотосинтез-общая-схема-процесса.jpg

Суммарные уравнения и частные реакции фотосинтеза представлены в таблице.
 
Фотосинтез Уравнения.png
Значение фотосинтеза
1. В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов.
 
2. Фотосинтез обеспечивает постоянство уровня CO2 и O2 в атмосфере.
 
3. Фотосинтез обеспечивает образование органических веществ, а следовательно, пищу для всех живых существ.
 
4. В верхних слоях воздушной оболочки Земли из кислорода образуется озон O3, из которого формируется защитный озоновый экран, предохраняющий организмы от опасного для жизни воздействия ультрафиолетового излучения.
 

ТЕМА 2Биологическое окисление( ЭНЕРГЕТИЧЕСКИЙ ОБМЕН)

2. Энергетический обмен (катаболизм, диссимиляция)

Теория:


Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).
Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.
АТФ.png
 
АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):
 
АДФ + H3PO4+ 40 кДж = АТФ + H2O.

Энергия запасается в форме энергии химических связей АТФ.  Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.

При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно 40 кДж энергии.

Энергия для синтеза АТФ из АДФ  выделяется в процессе диссимиляции.
Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.
В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительныйбескислородный и кислородный.
 
В результате этого органические вещества распадаются до простейших неорганических соединений.
 
24-10-2018 10-12-46 — копия.jpg
 
У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.
 
В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.
Первый этап — подготовительный
Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.
Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.
 
В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ  не образуется.
Второй этап — бескислородный (гликолиз)
Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.
Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ.
Процесс бескислородного расщепления глюкозы называется гликолиз.
Гликолиз происходит в цитоплазме клеток.
 
Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6H12O6 в две молекулы пировиноградной кислоты — ПВК C3H4O3 и две молекулы АТФ (в виде которой запасается примерно 40 % энергии, выделившейся при гликолизе). Остальная энергия (около 60 %) рассеивается в виде тепла.
 
C6H12O6+2H3PO4+2АДФ=2C3H4O3+2АТФ +2H2O.

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.
 
HOOCCOCH3пировиноградная кислотаНАДH+H+лактатдегидрогеназаHOOCCHOHCH3молочная кислота.

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.

При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:
 
C6H12O6+2H3PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2H2O.
Третий этап — кислородный
В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и H2O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.
 
Этот этап происходит на кристах митохондрий.

Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.
Третий (кислородныйэтап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде  36 молекул АТФ  (2 молекулы в цикле Кребса и 34 молекулы в ходе окислительного фосфорилирования).
Этот этап можно представить себе в следующем виде:
 
2C3H4O3+6O2+36H3PO4+36АДФ=6CO2+42H2O+36АТФ.

Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется 38 молекул АТФ.

Суммарная реакция энергетического обмена:
  
C6H12O6+6O2=6CO2+6H2O+38АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.



ГРУППА 106

ТЕМА: Палеозой // Paleozoic Era

Палеозойская эра началась около 540 миллионов лет назад и закончилась примерно 250 миллионов лет назад. Она продолжалась 290 миллионов лет. Первый период Палеозойской эры - кембрийский, начался с массового распространения живых организмов с минеральным скелетом. Долгое время считалось, что тогда же возникли и многоклеточные организмы, но изучение вендской (эдиакарской) фауны показало, что мягкотелые многоклеточные, лишенные минерального скелета, возникли значительно раньше. Сейчас палеонтологи полагают, что отдельные виды, обладавшие различными скелетными элементами, могли появится и до начала Палеозоя, но они не были массовыми.

На протяжении Палеозоя возникает огромное количество типов и классов живых существ. Жизнь очень сильно усложняется. Если в самом начале Палеозоя все живые организмы обитают в морях, а самыми развитыми живыми существами являются головоногие моллюски, то в конце последнего периода Палеозойской эры – пермского, на суше, покрытой лесами, уже существуют не только амфибии и рептилии, но и примитивные млекопитающие.

Именно в Палеозое происходит освоение суши, сначала растениями, затем членистоногим, а затем уже и позвоночными. Освоение новой среды обитания приводит к возникновению новых приспособлений и адаптаций, появляются совершенно новые организмы, способные жить в новых условиях. Осваивающие мелководья и полузатопленные участки побережий потомки рыб – амфибии, живут на размытой границе воды и суши, но все-таки еще в воде. Рептилии, благодаря более плотным кожным покровам и размножению защищенными от высыхания, в отличие от икры амфибий, яйцами, уже по-настоящему осваивают сушу.

Морская жизнь не только «выплескивается» на сушу, но и постоянно усложняется в родной среде обитания. Безраздельно властвовавших в начале Палеозоя в толще воды головоногих моллюсков теснят рыбы. Часть головоногих вымирает, но возникают все более сложно организованные виды, появляются аммониты, расцвет которых придется на следующую эру – Мезозойскую.

С середины Палеозоя жизнь начинает осваивать еще одну среду – воздушную. Но пока в воздух поднимаются только членистоногие – насекомые. Для позвоночных воздух еще закрыт – они освоят эту среду только в триасе – первом периоде Мезозоя.

Конечно, на протяжении всего Палеозоя идет не только возникновение новых групп живых организмов, но и вымирание старых, не успевающих приспособится к новой, изменяющейся обстановке. К середине Палеозоя вымирают широко распространенные в кембрии членистоногие хищники – аномалокарисы и подобные им виды. Трилобиты, доминировавшие в донной фауне в начале Палеозоя, и достигавшие в ордовикском периоде длины в 90 сантиметров, в конце Палеозойской эры – в карбоне и перми, становятся редкими и мелкими – 1-2 сантиметра в длину.

А завершается Палеозой грандиозным вымиранием в конце пермского периода. Это вымирание по своим масштабам превзошло все другие известные вымирания, в том числе и знаменитое вымирание динозавров в конце Мезозоя. В конце перми исчезло до 95% видов земной фауны. Причины этого катастрофического вымирания, впрочем, как и других подобных событий, точно неизвестны. Глобальность и массовость вымирания свидетельствуют о том, что у него была какая-то общая и масштабная причина. Сторонники катастроф винят в пермском кризисе мощнейшее извержение вулканов на территории современной Сибири или падение крупного астероида, след от которого пока не найден. Есть предположение, что падение астероида и последовавшая за ним вспышка вулканизма связаны друг с другом. Другие исследователи винят в катастрофе резкое глобальное потепление, перегрев Земли, который привел к уменьшению содержания кислорода в воде океанов и гибели как наземных, так и водных экосистем. Есть и другие гипотезы. Ни одна из них не может сейчас считаться более-менее подтвержденной. Ясно одно – жизнь пережила этот кризис и вышла на новый виток своего развития.






 ГРУППА 308

ТЕМА:Получение и применение бензола и его гомологов

Химические свойства аренов 

I. РЕАКЦИИ ОКИСЛЕНИЯ 

1. Горение (коптящее пламя):                       

2C6H6 + 15O2 t →  12CO2 + 6H2O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки 

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку): 

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/Image1604.gif?attredirects=0


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/Image1605.gif?attredirects=0

5C6H5-C2H+ 12KMnO+ 18H2SO4 → 5C6H5COOH + 5CO2 + 6K2SO4 + 12MnSO4+28H2O

5C6H5-CH+ 6KMnO+ 9H2SO4 → 5C6H5COOH + 3K2SO4 + 6MnSO4 +14H2O

Упрощённо:             

C6H5-CH+ 3O    KMnO4   →    C6H5COOH + H2O

Б) в нейтральной и слабощелочной до солей бензойной кислоты 

C6H5-CH+ 2KMnO→ C6H5COOК + KОН + 2MnO2 + H2O 

II. РЕАКЦИИ ПРИСОЕДИНЕНИЯ  (труднее, чем у алкенов) - радикальное присоединение.

1. Галогенирование                   

C6H6 +3Cl2 hν → C6H6Cl6 (гексахлорциклогексан - гексахлоран)

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/39-4.jpg?attredirects=0

2. Гидрирование               

C6H6 + 3H2      t,Pt или Ni →    C6H12 (циклогексан)

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/39-3.jpg?attredirects=0

3. Полимеризация

https://lh6.googleusercontent.com/p4XnXW0-VXGFCda6PFGZJNQnCcSWRYfV-lTLsDbLAiA=w221-h66-no

                   

IIIРЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм  (легче, чем у алканов) - наличие областей повышенной электронной плотности с двух сторон плоского ароматического цикла ведет к тому, что бензольное кольцо является нуклеофилом и в связи с этим склонно подвергаться атаке электрофильным реагентом. Таким образом, для ароматических соединений наиболее типичны реакции электрофильного замещения.

1. Галогенирование - 

a) бензола                

C6H6 + Cl2  AlCl3→ C6H5-Cl + HCl    (хлорбензол) 

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/39-1.jpg?attredirects=0

C6H6 + 6Cl2  t ,AlCl3→  C6Cl6 + 6HCl   (гексахлорбензол)                 

C6H6 + Br2  t,FeCl3→ C6H5-Br + HBr   (бромбензол)

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/38-3.jpg?attredirects=0

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).                         

1) C6H5-CH3 + Cl2 hν →  C6H5-CH2-Cl + HCl 

2) 

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/Image1602.gif?attredirects=0 

в) гомологов бензола в присутствии катализатора                         

C6H5-CH3 + Cl2   AlCl3→ (смесь орта, пара производных) +  HCl

2. Нитрование (с азотной кислотой)                        

C6H6 + HO-NO2   -t, H2SO4→ C6H5-NO2 + H2O (нитробензол запах миндаля!)

https://sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no21-fiziceskie-i-himiceskie-svojstva-arenov-polucenie-primenenie/39-2.jpg?attredirects=0

 C6H5-CH3 + 3HO-NO2   -t, H2SO4→ СH3-C6H2(NO2)3 + 3H2O (2,4,6-тринитротолуол)

ВИДЕО-ОПЫТЫ

Изучение физических свойств бензола

         Горение бензола

         Изучение отношения бензола к бромной воде и раствору перманганата калия

Бромирование бензола

Нитрование бензола

         Хлорирование бензола (получение гексахлорана)