вторник, 13 апреля 2021 г.

 14.04.21 г. 305

ГРУППА 305

ТЕМА 1:Видообразование – результат эволюции. ТЕМА 2:Основные направления эволюционного процесса. Л.Р.№3 «Ароморфозы и идиоадаптации организмов».


Процесс образования видов осуществляется в результате взаимодействия элементарных эволюционных факторов: мутаций, дрейфа генов, естественного отбора, волн жизни и изоляции.

Формы видообразования:

  1. дивергентное (истинное) видообразование — разделение первоначально единого вида на два или более новых. Механизм: изоляция между популяциями — накопление генетических изменений — появление репродуктивной изоляции (невозможности скрещиваться);
  2. филетическое видообразование — постепенное превращение во времени одного вида в другой. Механизм: изменения условий среды захватывают весь ареал — накопление наиболее выгодных изменений у всех популяций вида;
  3. путём гибридизации (гибридогенное) — скрещивание популяций разных видов на территории пересечения их ареалов.

Основные способы видообразования:

1 — филетическое

2 — путём гибридизации (гибридогенное)

3 — дивергентное (истинное)

 

 

Дивергентное видообразование

При разделении одного вида на два и более новых различают два основных механизма видообразования — аллопатрическое и симпатрическое.

Аллопатрическое (географическое) видообразование происходит при географической изоляции между популяциями или вследствие резких отличий в окружающей среде внутри вида.

Симпатрическое (экологическое) видообразование: новый вид образуется внутри ареала исходного вида. С самого начала изоляция является генетической. Такое положение создаётся в результате полиплоидии вследствие нарушений нормального хода мейоза, при крупных хромосомных перестройках или межвидовой гибридизации.


Аллопатрическое видообразование

Аллопатрическое (географическое) видообразование, как правило, происходит медленно и даёт виды, отличающиеся по морфофизиологическому критерию от вида-родоначальника. 

  1. Механизм аллопатрического видообразования:
  2. Возникновение географической преграды (реки) приводит к возникновению изолятов — географически изолированных популяций.

  1. Каждый изолят будет эволюционировать независимо от других популяций. В изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу.
  2. Накопленные изменения в генотипе приводят к репродуктивной изоляции.



В Австралии обитает роскошный горный попугай Polytelis anthopeplus (Lear). В условиях засушливого периода единый ареал разделился пустыней Викторией на два разобщённых между собой ареала — на юго-востоке и юго-западе Австралии. В настоящее время оба подвида отличаются по своему поведению и местообитанию (этологический и экологический критерии). Восточно-австралийская популяция (Polytelis anthopeplus anthopeplus) избегает соседства с человеком и держится в степях с отдельно стоящими колками густых кустарников. Западно-австралийская популяция горного попугая (Polytelis anthopeplus monarchoides), наоборот, охотно заселяет культурный ландшафт и настолько увеличилась в числе, что наносит ощутимый вред полям пшеницы. 

     

Так как между географическими популяциями попугаев не происходит обмена генетической информацией, в будущем возможно возникновение репродуктивной изоляции и, следовательно, видообразования.

Большинство видов, особенно животных, возникают именно аллопатрическим путем.

симпатрическое видообразование

Симпатрическое (экологическое) видообразование происходит на одной территории  и связано с появлением в популяции нескольких групп, особи которых не могут скрещиваться между собой.
Симпатрический путь относительно быстрый и, как правило, даёт виды, близкие к исходному по морфофизиологическим показателям.

Симпатрический путь видообразования у паразитов часто связан с освоением популяцией новых хозяев. Анализ генного состава и межхромосомных различий между человеком и человекообразными обезьянами даёт повод предположить, что разделение этих двух ветвей могло идти симпатрическим путем.
Классическим примером симпатрического видообразования является сверхбыстрая дивергенция рыб-цихлид больших африканских озёр — Малави, Танганьика и Виктория.  Озёра имеют разный возраст, но все они относительно молоды. Каждое озеро изначально было заселено небольшим числом видов рыб, которые стали быстро дивергировать, причём эволюция в каждом озере шла в значительной мере независимо. В озере Танганьика 250 видов цихлид образовалось за 12−15 млн лет, в Малави — 500 видов менее чем за 5 млн лет. Рекордная скорость видообразования зафиксирована в самом молодом озере, Виктории, где на формирование 500 эндемичных видов ушло, по разным оценкам, от 15 до 100 тысяч лет.  Как обычно бывает в подобных случаях, освоение сходных ниш вело к независимому появлению сходных жизненных форм в разных озёрах.

В природе разные виды африканских цихлид обычно не скрещиваются между собой. Репродуктивная изоляция обеспечивается в основном брачными предпочтениями. По-видимому, одним из главных факторов, обеспечивших быстрое видообразование у цихлид, был половой отбор.

Также симпатрическим путём возник новый вид цихлиды в озере Апойо, Никарагуа — учёным удалось показать, что и исходный вид, и новый являются потомками одной когда-то попавшей в это озеро самки (или немногих самок, но митохондриальные ДНК их не сохранились). 
Симпатрическое видообразование, сопровождавшееся дивергенцией по времени цветения, произошло у пальм рода Howea на маленьком вулканическом островке недалеко от Австралии. Один вид этих пальм цветёт в среднем на 6 недель раньше другого. Дизруптивный (разрывающий) отбор, особенно по признакам, связанным с размножением, считается одним из важнейших механизмов симпатрического видообразования. 

Репродуктивная изоляция двух видов ворон — серой и чёрной — обеспечивается мутациями участка хромосомы, отвечающего за цвет оперения и поведение птицы. На границе ареалов происходит гибридизация видов.

   Серая и чёрная вороны


Ареалы серой (слева) и чёрной (справа) ворон.

У видов с половым размножением симпатричеcкое видообразование без географической изоляции происходит довольно редко, т. к. новые мутации либо распространяются в популяции (при возможности скрещивания с особью-мутантом), либо уходят вместе с гибелью носителя (при невозможности скрещивания с особью-мутантом).

Однако у организмов, размножающихся бесполым путем, в том числе у высших растений с вегетативным размножением, один мутант (например, полиплоид), достаточно отличающийся от родительской популяции, чтобы быть генетически изолированным, может дать начало новому виду. 

Вариантами симпатрического видообразования являются полиплоидия и гибридизация.

Полиплоидия — тип геномной мутации: увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом. 

Так, разные виды пшениц составляют ряд с наборами 14, 28, 42 хромосомы. В клетках дикого хлопчатника 26 хромосом, культурного — 52.

Гибридизация — скрещивание организмов разных видов, т. е. объединение различных геномов в одной особи (гибриде).

Культурная слива возникла путем гибридизации тёрна с алычой. Другим примером гибридогенного вида является рябинокизильник, распространённый в лесах центральной Сибири.

Рябинокизильник — природный гибрид рябины и кизила.

ТЕМА 2:Основные направления эволюционного процесса. Л.Р.№3 «Ароморфозы и идиоадаптации организмов». 

Учение о направлениях эволюционного процесса было разработано русским учёным А. Н. Северцовым.
Биологический прогресс — направление эволюции, характеризующееся повышением приспособленности систематической группы живых организмов к среде обитания.
Критерии биологического прогресса:
  • увеличение численности особей;
  • расширение ареала;
  • увеличение числа таксонов (популяций, подвидов, видов и т. д.).
Биологический прогресс — это результат успеха систематической группы в борьбе за существование. Он обеспечивается появлением новых приспособлений, полезных в данной среде обитания. Организмы выживают и размножаются, что приводит к увеличению численности и освоению новых мест обитания. Возникают новые популяции. Они подвергаются действию разнонаправленного естественного отбора и постепенно превращаются в новые виды, виды — в роды, роды — в семейства и так далее. Происходит увеличение числа таксономических групп и их совершенствование.
 
В состоянии прогресса в настоящее время находятся многие сорняки (одуванчик, пырей, марь белая), вредители сельскохозяйственных культур (колорадский жук, фитофтора). Их прогресс связан с деятельностью человека.  
 
Биологический прогресс достигается тремя путями: повышением организации и освоением новой среды обитания; приспособлением к новой среде и её заселением; понижением организации и освоением более простой среды.
 
02-03-2018 20-17-50.jpg
 
Эволюционное изменение, ведущее к усложнению строения и функций организмов, повышающее общий уровень их организации, позволяющее освоить новую среду обитания — ароморфоз.
Ароморфозы привели к возникновению крупных систематических групп: типов, отделов, классов, некоторых отрядов.
  
Примеры ароморфозов у животных:
  • двусторонняя симметрия тела;
  • сквозной кишечник;
  • трахейное дыхание у членистоногих;
  • лёгочное дыхание у позвоночных;
  • альвеолярные лёгкие;
  • четырёхкамерное сердце;
  • два круга кровообращения;
  • теплокровность.
Примеры ароморфозов у растений:
  • возникновение фотосинтеза;
  • формирование тканей;
  • возникновение листа, стебля, корня;
  • появление семени;
  • образование цветка и плода.
Эволюционное изменение, приспосабливающее организмы к конкретным условиям существования, но не повышающее общий уровень их организации — идиоадаптация (алломорфоз).
Идиоадаптации возникают на основе ароморфозов и позволяют систематической группе более полно заселить среду обитания. Приводят к возникновению видов, родов, семейств.
 
Примеры идиоадаптаций:
  • разные типы листьев и стеблей у растений;
  • разное строение цветков у растений;
  • видоизменения побега растений;
  • разные клювы у птиц;
  • разная форма тела и окраска рыб;
  • разные типы ротовых аппаратов насекомых.
 
03-03-2018 11-20-09 — копия.jpg
Идиоадаптации ротовых органов насекомых
Упрощение строения организмов при переходе в более простую среду обитания — дегенерация.
Примеры общей дегенерации:
  • упрощение нервной системы и органов чувств у паразитических червей;
  • редукция пищеварительной системы у ленточных червей;
  • редукция головы у двустворчатых моллюсков;
  • исчезновение крыльев у некоторых паразитических насекомых;
  • редукция листьев у паразитических растений.
 
03-03-2018 17-33-49.jpg
Растение-паразит петров крест
 
03-03-2018 17-36-52.jpg
Двустворчатый моллюск беззубка
Биологический регресс — направление эволюции, характеризующееся понижением приспособленности систематической группы живых организмов к среде обитания и её постепенным вымиранием.
Критерии биологического регресса:
  • снижение численности особей в систематических группах; 
  • сужение ареала;
  • уменьшение числа таксонов (популяций, подвидов, видов и т. д.).
Виды, находящиеся в состоянии регресса, нуждаются в охране и занесены в Красную книгу. Это уссурийский тигрбурый и гималайский медведичёрный аиственерин башмачокженьшень и многие другие.

 Лабораторная работа № 3 по биологии .

Тема: Ароморфозы (у растений) и идиоадаптации (у насекомых).

Цель: сформировать умение выявлять ароморфозы и идиоадаптации у растений и животных, объяснять их значение.

Оборудование: гербарные материалы водорослей, мхов, папоротникообразных, цветковых растений, веточки сосны или ели, коллекции насекомых.

Ход работы

1. Рассмотрите растения: водоросль, мох, папоротник, веточку сосны или ели, цветковое растение — назовите имеющиеся у них органы и заполни Таблицу 1.  Выявите черты усложнения в строении растений этих отделов и раскройте их значение. Определите, по какому направлению шла эволюция растений от водорослей до покрытосеменных.

2.Рассмотрите насекомых разных отрядов (чешуекрылые, прямокрылые, двукрылые и др.), выявите в их строении черты сходства и различия и заполни Таблицу 2. Сделайте вывод о направлении эволюции насекомых.

Таблица 1. Ароморфозы растений

растение

Органы растения

Ламинария

Слоевище, ризоиды.

Папоротник орляк

Корень, стебель, листья, споры.

Сосна крымская

Корень, стебель, листья, семена.

Лютик ползучий

Корень, стебель, листья, цветки, семена.

Ароморфозы – это существенные эволюционные изменения, повышающие уровень организации организмов.

Ароморфозы растений:

- появление корня;

- разделение тела на стебель и листообразные пластинки;

- возникновение оплодотворения, не связанного с водой;

- возникновение семенных зачатков;

- возникновение семени;

- возникновение хвои;

- появление шишки – видоизменённого побега;

- появление в цветках половых органов – мужских (антеридии) и женских (архегонии);

- появление способности к опылению насекомыми.

Вывод: эволюция растений от водорослей до покрытосеменных шла по направлению ароморфозов. В результате ароморфозов повышался уровень организации растений, образовывались новые классы растений, у растений появлялись значительные преимущества в борьбе за выживание и возможность перехода в другую среду обитания.

Таблица 2. Идиоадаптации у насекомых

Отряд насекомых

Части тела

Конечности

Крылья

Ротовой аппарат

двукрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев:

передняя пара хорошо развита, задняя пара - жужжальца

Лижуще-сосущий (муха), колюще-сосущий (комар).

чешуекрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев, покрытых чешуйками

Сосущий (бабочка), грызущий (моль).

прямокрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев:

передняя пара – надкрылья, задняя пара – широкие перепончатые крылья.

Грызущий (кузнечик).

 

Идиоадаптации – это прогрессивные, но незначительные эволюционные изменения.

Идиоадаптации у насекомых проявляются в различном строении ротовых аппаратов. Появление большого разнообразия видов насекомых – следствие их эволюционного развития по пути идиоадаптаций.

Вывод: в результате идиоадаптаций насекомые приспосабливались к среде обитания, образовывались новые виды, рода, семейства, отряды внутри класса. Уровень организации организмов не изменялся.

 13.04.21 г. 305, 308,208

ГРУППА 305 БИОЛОГИЯ

ТЕМА: Естественный отбор -направляющий фактор эволюции.  Формы естественного отбора в популяциях.Естественный отбор -направляющий фактор эволюции.Формы естественного   

              отбора в популяциях.

(ПРОЧИТАЙТЕ, СОСТАВЬТЕ КРАТКИЙ ПЛАН )

Естественный отбор выступает в роли главного фактора преобразования организмов, способствуя выживанию и оставлению потомства наиболее приспособленными особями. Однако формы естественного отбора, в зависимости от его направленности, эффективности и особенностей среды обитания организмов, могут быть разными.

Популяции (или виды) состоят из разнообразных организмов, но имеют некоторое среднее значение любого признака. Это можно представить графически, если по оси Х отложить значения признака от меньшего к большему, а по оси У - частоту носителей этого признака:

Графическое отображение естественного отбора

Графическое отображение естественного отбора

График – кривая распределения - имеет форму параболы и отражает нормальное распределение признака, т.к. очевидно, что большинство особей в популяции имеют среднее значение признака, а особи с крайними значениями представляют собой меньшинство.

В зависимости от того, где на кривой располагаются наиболее приспособленные фенотипы, учёные выделяют несколько форм естественного отбора.

Движущий отбор – отбор, при котором сдвиг в ряду поколений происходит в определённом направлении. Одностороннее давление движущей силы естественного отбора (с одной стороны) направлено на крайние формы фенотипов.

Движущий отбор

Движущий отбор

Классическим примером, доказывающим существование движущей формы отбора, является индустриальный меланизм, описанный на примере изменения покровительственной окраски в популяции берёзовой пяденицы в Англии в XIX в. Вследствие развития промышленности стволы деревьев значительно потемнели, а также погибли светлые лишайники, обитающие на них, из-за чего светлые бабочки стали лучше видны для птиц, а тёмные — хуже.

Индустриальный меланизм у бабочек

Индустриальный меланизм у бабочек

Итак, движущий отбор осуществляется при изменении условий окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определённом направлении, перемещая соответственно и норму реакции. Отбор всегда осуществляется по фенотипам, но вместе с ними отбираются генотипы, которых их обусловливают.

Любое приспособление всегда относительно. Приспособленность организмов к новым условиям не означает, что отбор прекращает своё действие в популяции. В постоянных условиях среды действует стабилизирующий отбор. Эта форма отбора направлена в пользу среднего значения признака, установившегося в популяции, то есть особи, существенно отклоняющиеся от среднего значения признаков, устраняются.

Стабилизирующий отбор

Стабилизирующий отбор

Например, во время бури гибнут птицы с короткими и длинными крыльями, а со средними чаще выживают.

Сходство всех особей, наблюдаемое в популяциях – результат действия стабилизирующей формы естественного отбора.

Таким образом, стабилизирующая форма отбора в течение сотен тысяч и миллионов поколений оберегает виды от существенных изменений, от разрушающего влияния мутационного процесса, выбраковывая мутантные формы. Без стабилизирующего отбора не было бы устойчивости (стабильности) в живой природе. Стабилизирующий и движущий отборы взаимосвязаны и представляют две стороны одного процесса. Популяции постоянно вынуждены приспосабливаться к изменениям условий среды. Движущий отбор будет сохранять генотипы, которые наиболее соответствуют изменениям среды. Когда условия среды стабилизируются, отбор приведет к созданию хорошо приспособленной к ней формы. С этого момента в действие вступает стабилизирующий отбор, который будет поддерживать типичные, преобладающие генотипы и устранять от размножения уклоняющиеся от средней нормы мутантные формы.

Для многих популяций характерно существование двух или нескольких форм по тому или иному признаку – полиморфизм. Его нельзя объяснить только возникновением новых мутаций. В одних случаях он может быть обусловлен повышенной относительной жизнеспособностью гетерозигот. В других − может быть результатом действия особой формы отбора, получившей название дизруптивного, или разрывающего

Дизруптивный отбор

Дизруптивный отбор

Этот отбор действует в тех случаях, когда две или более генетически различные формы обладают преимуществом в разных условиях, например в разные сезоны года. Хорошо изучен случай с преимущественным выживанием в зимний сезон красных, а в летний − чёрных форм двухточечной божьей коровки. Ещё одним примером действия дизруптивного отбора может служить существование сезонных рас у ряда сорных растений (например, у погремка лугового). Дизруптивный отбор благоприятствует более чем одному фенотипу и направлен против средних промежуточных форм. Он как бы разрывает популяцию по данному признаку на несколько групп, встречающихся на одной территории, и может при участии изоляции привести к разделению популяции на две и более, т.е. к видообразованию.

Известно, что у самцов многих видов ярко выражены вторичные половые признаки – яркие перья попугаев, хвост павлина, алые гребни петухов, окраска тропических рыб, бивни индийского слона и др. Это явление называют половым диморфизмом. На первый взгляд эти признаки носят неадаптивный характер и осложняют жизнь, делая особи более заметными для хищников, уменьшая их шансы на выживание. Но выживание – не единственный компонент приспособленности организмов, второй компонент – успех в размножении. Ещё Ч. Дарвин обратил внимание на то, что эти компоненты часто вступают в противоречие. Он же предложил называть отбор, направленный на успех в размножении половым отбором.

Вторичные половые признаки у самцов разных видов

Вторичные половые признаки у самцов разных видов

Самец, который живёт недолго, но нравится самкам, имеет больше шансов на успешное размножение, так как производит больше потомков, чем тот, который живёт долго, но оставляет мало потомков. Например, успех самца-павлина у самок напрямую зависит от яркости его оперения и числа глазков на хвосте.

Рассмотрев формы естественного отбора, можно сделать вывод о том, что он проявляет творческую роль, отбирая и накапливая полезные для популяции и вида наследственные изменения и отбрасывая вредные. Это позволяет постепенно создавать новые, более приспособленные к среде обитания виды.

ГРУППА 308

ТЕМА:Одноосновные предельные карбоновые кисло­ты. Строение молекул. Изомерия и номенк­латура.Свойства карбоновых кислот.

1. Карбоновые кислоты – это кислородсодержащие органически вещества, молекулы которых содержат одну или несколько карбоксильных групп  

(-СOOH), соединённых с углеродным радикалом или водородным атомом. 

Карбоксильная группа содержит две функциональные группы – карбонил >С=О и гидроксил -OH, непосредственно связанные друг с другом:

2. Классификация

А) По числу карбоксильных групп в молекуле 

Название

Примеры

1) Одноосновные

Метановая, муравьиная кислота

Этановая, уксусная кислота

2) Двухосновные

HOOC – COOH

Щавелевая кислота 

3) Многоосновные

Б) По природе углеводородного радикала 

Название

Примеры

1) Предельные (насыщенные)

HCOOH

Метановая, муравьиная кислота

CH3COOH

Этановая, уксусная кислота 

2) Непредельные

Акриловая кислота

СН2=СНСООН

Кротоновая кислота

СН3–СН=СН–СООН

Олеиновая СН3–(СН2)7–СН=СН–(СН2)7–СООН

Линолевая СН3–(СН2)4–(СН=СН–СН2)2–(СН2)6–СООН

Линоленовая СН3–СН2–(СН=СН–СН2)3–(СН2)6–СООН

3) Ароматические

С6Н5СООН – бензойная кислота  

НООС–С6Н4–СООН   Пара-терефталевая кислота               

3. Изомерия и номенклатура

I. Структурная

А) Изомерия углеродного скелета (начиная с C4) 

Б) Межклассовая со сложными эфирами RCO – OR1  (начиная с C2)

Например: для С3Н6О2

CH3-CH2-COOH пропионовая кислота

СH3-CO-OCH3 метиловый эфир уксусной кислоты 

II. Пространственная

А) Оптическая 

Например:

 

Б) Цис- транс – изомерия  для непредельных кислот

Пример:

 

4. Номенклатура карбоновых кислот 

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса -овая и слова кислота.

Чтобы указать положение заместителя (или радикала), нумерацию углеродной цепи начинают от атома углерода карбоксильной группы. Например, соединение с разветвленной углеродной цепью (CH3)2CH-CH2-COOH называется 3-метилбутановая кислота. Для органических кислот широко используются также тривиальные названия, которые обычно отражают природный источник, где были впервые обнаружены эти соединения. 

Некоторые одноосновные кислоты

Формула

Название кислоты R-COOH

Название остатка RCOO-

систематическое

тривиальное

HCOOH

метановая

муравьиная

формиат

CH3COOH

этановая

уксусная

ацетат

C2H5COOH

пропановая

пропионовая

пропионат

C3H7COOH

бутановая

масляная

бутират

C4H9COOH

пентановая

валерьяновая

валерат

C5H11COOH

гексановая

капроновая

капрат

C15H31COOH

гексадекановая

пальмитиновая

пальмитат

C17H35COOH

октадекановая

стеариновая

стеарат

C6H5COOH

бензолкарбоновая

бензойная

бензоат

CH2=СH-COOH

пропеновая

акриловая

акрилат

Для многоосновных кислот применяют суффиксы -диовая, -триовая и т.д.

Например:

HOOC-COOH - этандиовая (щавелевая) кислота;

HOOC-CH2-COOH - пропандиовая (малоновая) кислота. 

ПРЕДЕЛЬНЫЕ ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ

CnH2n+1-COOH или CnH2nO2

Гомологический ряд

Название

Формула

кислоты

tпл.
°C

tкип.
°C

ρ
г/см3

кислоты

муравьиная

метановая

HCOOH

8,3

100,5

1,22

уксусная

этановая

CH3COOH

16,8

118

1,05

пропионовая

пропановая

CH3CH2COOH

-21

141

0,99

масляная

бутановая

CH3(CH2)2COOH

-6

164

0,96

Строение карбоксильной группы 

Карбоксильная группа сочетает в себе две функциональные группы – карбонил >C=O и гидроксил -OH, взаимно влияющие друг на друга:

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризации связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

 

 

С увеличением молекулярной массы растворимость кислот в воде уменьшается.

Физические свойства предельных одноосновных кислот

Низшие члены этого ряда при обычных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный "уксусный" запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость; при 17 °С она замерзает, превращаясь в льдистое вещество, которое получило название "ледяная" уксусная кислота. Средние представители этого гомологического ряда — вязкие, "маслообразные" жидкости; начиная с С10 — твердые вещества.

Простейший представитель – муравьиная кислота НСООН – бесцветная жидкость с т. кип. 101 °С, а чистая безводная уксусная кислота CH3COOH при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лед (отсюда ее название ледяная кислота).
Простейшая ароматическая кислота - бензойная C6H5COOH (т. пл. 122,4°С) - легко возгоняется, т.е. переходит в газообразное состояние, минуя жидкое. При охлаждении её пары сублимирутся в кристаллы. Это свойство используется для очистки вещества от примесей. 

ГРУППА 208
ТЕМА:ТЕМА:Одноосновные предельные карбоновые кисло­ты. Строение молекул. Изомерия и номенк­латура.Свойства карбоновых кислот.

1. Карбоновые кислоты – это кислородсодержащие органически вещества, молекулы которых содержат одну или несколько карбоксильных групп  

(-СOOH), соединённых с углеродным радикалом или водородным атомом. 

Карбоксильная группа содержит две функциональные группы – карбонил >С=О и гидроксил -OH, непосредственно связанные друг с другом:

2. Классификация

А) По числу карбоксильных групп в молекуле 

Название

Примеры

1) Одноосновные

Метановая, муравьиная кислота

Этановая, уксусная кислота

2) Двухосновные

HOOC – COOH

Щавелевая кислота 

3) Многоосновные

Б) По природе углеводородного радикала 

Название

Примеры

1) Предельные (насыщенные)

HCOOH

Метановая, муравьиная кислота

CH3COOH

Этановая, уксусная кислота 

2) Непредельные

Акриловая кислота

СН2=СНСООН

Кротоновая кислота

СН3–СН=СН–СООН

Олеиновая СН3–(СН2)7–СН=СН–(СН2)7–СООН

Линолевая СН3–(СН2)4–(СН=СН–СН2)2–(СН2)6–СООН

Линоленовая СН3–СН2–(СН=СН–СН2)3–(СН2)6–СООН

3) Ароматические

С6Н5СООН – бензойная кислота  

НООС–С6Н4–СООН   Пара-терефталевая кислота               

3. Изомерия и номенклатура

I. Структурная

А) Изомерия углеродного скелета (начиная с C4) 

Б) Межклассовая со сложными эфирами RCO – OR1  (начиная с C2)

Например: для С3Н6О2

CH3-CH2-COOH пропионовая кислота

СH3-CO-OCH3 метиловый эфир уксусной кислоты 

II. Пространственная

А) Оптическая 

Например:

 

Б) Цис- транс – изомерия  для непредельных кислот

Пример:

 

4. Номенклатура карбоновых кислот 

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса -овая и слова кислота.

Чтобы указать положение заместителя (или радикала), нумерацию углеродной цепи начинают от атома углерода карбоксильной группы. Например, соединение с разветвленной углеродной цепью (CH3)2CH-CH2-COOH называется 3-метилбутановая кислота. Для органических кислот широко используются также тривиальные названия, которые обычно отражают природный источник, где были впервые обнаружены эти соединения. 

Некоторые одноосновные кислоты

Формула

Название кислоты R-COOH

Название остатка RCOO-

систематическое

тривиальное

HCOOH

метановая

муравьиная

формиат

CH3COOH

этановая

уксусная

ацетат

C2H5COOH

пропановая

пропионовая

пропионат

C3H7COOH

бутановая

масляная

бутират

C4H9COOH

пентановая

валерьяновая

валерат

C5H11COOH

гексановая

капроновая

капрат

C15H31COOH

гексадекановая

пальмитиновая

пальмитат

C17H35COOH

октадекановая

стеариновая

стеарат

C6H5COOH

бензолкарбоновая

бензойная

бензоат

CH2=СH-COOH

пропеновая

акриловая

акрилат

Для многоосновных кислот применяют суффиксы -диовая, -триовая и т.д.

Например:

HOOC-COOH - этандиовая (щавелевая) кислота;

HOOC-CH2-COOH - пропандиовая (малоновая) кислота. 

ПРЕДЕЛЬНЫЕ ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ

CnH2n+1-COOH или CnH2nO2

Гомологический ряд

Название

Формула

кислоты

tпл.
°C

tкип.
°C

ρ
г/см3

кислоты

муравьиная

метановая

HCOOH

8,3

100,5

1,22

уксусная

этановая

CH3COOH

16,8

118

1,05

пропионовая

пропановая

CH3CH2COOH

-21

141

0,99

масляная

бутановая

CH3(CH2)2COOH

-6

164

0,96

Строение карбоксильной группы 

Карбоксильная группа сочетает в себе две функциональные группы – карбонил >C=O и гидроксил -OH, взаимно влияющие друг на друга:

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризации связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

 

 

С увеличением молекулярной массы растворимость кислот в воде уменьшается.

Физические свойства предельных одноосновных кислот

Низшие члены этого ряда при обычных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный "уксусный" запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость; при 17 °С она замерзает, превращаясь в льдистое вещество, которое получило название "ледяная" уксусная кислота. Средние представители этого гомологического ряда — вязкие, "маслообразные" жидкости; начиная с С10 — твердые вещества.

Простейший представитель – муравьиная кислота НСООН – бесцветная жидкость с т. кип. 101 °С, а чистая безводная уксусная кислота CH3COOH при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лед (отсюда ее название ледяная кислота).
Простейшая ароматическая кислота - бензойная C6H5COOH (т. пл. 122,4°С) - легко возгоняется, т.е. переходит в газообразное состояние, минуя жидкое. При охлаждении её пары сублимирутся в кристаллы. Это свойство используется для очистки вещества от примесей.