СПРАВА НАХОДИТСЯ АРХИВ БЛОГА-СМОТРИТЕ ДАТУ И СВОИ УРОКИ
РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 06.01.23г.-10.02.23г.
Пн.06,02: 306, 401, 401, 408
Вт. 07,02: 508, 505, 505, 501
Ср. 08.02: 406, 505, 401, ----
Чт. 09.02: 505, 501, 306, 508
Пт. 10.02: 401, 505, ----, 501
Здравствуйте, уважаемые студенты, записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы.
Моя почта : rimma.lu@gmail.com Жду ваши фотоотчеты!
ГРУППА 406 ХИМИЯ 47,48
ТЕМА 47 : Химические свойства белков: горение, денатурация, гидролиз, цветные реакции. Растворение белков в воде. Обнаружение белков в молоке и в мясном бульоне. Изучение свойств белков.
ТЕМА48 :Растворение белков в воде. Обнаружение белков в молоке и в мясном бульоне. Химические свойства глюкозы, сахарозы, крахмала. Изучение свойств белков.
а) простые белки – протеины, которые при гидролизе распадаются только на аминокислоты;
б) сложные белки или протеиды, образующие при гидролизе аминокислоты и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.) — соединения белковых веществ с небелковыми.
1. Амфотерные свойства белков
Как и аминокислоты, белки являются амфотерными соединениями, так как молекула любого белка содержит на одном конце группу -NH2, а на другом конце – группу -СООН.
Так, при действии щелочей белок реагирует в форме аниона – соединяется с катионом щелочи:
При действии же кислот он выступает в форме катиона:
Если в молекуле белка преобладают карбоксильные группы, то он проявляет свойства кислот, если же преобладают аминогруппы, — свойства оснований.
Очень важным для жизнедеятельности живых организмов является буферное свойство белков, т.е. способность связывать как кислоты, так и основания, и поддерживать постоянное значение рН различных систем живого организма.
Белки обладают и специфическими физико-химическими свойствами.
2. Денатурация белка (необратимое осаждение, свертывание)
Денатурация – это разрушение вторичной и третичной структуры белка (полное или частичное) и изменение его природных свойств с сохранением первичной структуры белка.
Сущность денатурации белка сводится к разрушению связей, обусловливающих вторичную и третичную структуры молекулы (водородных, солевых и других мостиков). А это приводит к дезориентации конфигурации белковой молекулы.
Денатурация бывает обратимой и необратимой.
Обратимая денатурация белка происходит при употреблении алкоголя, солёной пищи.
Необратимая денатурация может быть вызвана при действии таких реагентов, как концентрированные кислоты и щелочи, спирты, в результате воздействия высокой температуры, радиации, при отравлении организма солями тяжелых металлов (Hg2+, Pb2+, Си2+).
Например, яичный белок альбумин осаждается из раствора (свертывается) при варке яиц (при температуре 60-700С), теряя способность растворяться в воде.
Видеоопыт «Свертывание белков при нагревании»
Видеоопыт «Осаждение белков солями тяжелых металлов»
Видеоопыт «Осаждение белков спиртом»
3. Гидролиз белков
Гидролиз белков – это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.
Анализируя продукты гидролиза, можно установить количественный состав белков.
Переваривание белков в организме по своей сути представляет ферментативный гидролиз белковых молекул.
В лабораторных условиях и в промышленности проводится кислотный гидролиз.
В ходе гидролиза белков происходит разрушение пептидных связей. Гидролиз белка имеет ступенчатый характер:
4. Цветные (качественные) реакции на белки
Для белков известно несколько качественных реакций.
а) Ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца)
Белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), дают желтое окрашивание при действии концентрированной азотной кислоты.
Причина появления окраски – образование нитропроизводных ароматических аминокислот, например, фенилаланина:
Видеоопыт «Ксантопротеиновая реакция на белки»
б) Биуретовая реакция (на пептидные связи)
Все соединения, содержащие пептидную связь, дают фиолетовое окрашивание при действии на них солей меди (II) в щелочном растворе.
Причина появления окраски – образование комплексных соединений с координационным узлом:
Видеоопыт «Биуретовая реакция белков»
Видеоопыт «Качественные реакции на белки: биуретовая и ксантопротеиновая»
в) Цистеиновая реакция (на остатки аминокислот, содержащих серу)
Причина появления окраски – образование черного осадка сульфида серебра (II) PbS.
Видеоопыт «Качественное определение азота в органических соединениях»
Белки входят в состав каждой клетки и составляют около 50% ее сухой массы. Они играют ключевую роль в обмене веществ, реализуют важнейшие биологические функции, лежащие в основе жизнедеятельности всех организмов.
Среди большого разнообразия функций, выполняемых белками, первостепенное значение имеют структурная, или пластическая, и каталитическая. Это универсальные функции, поскольку они присущи всем живым организмам.
Структурные белки формируют каркас внутриклеточных органелл и внеклеточных структур, а также участвуют в стабилизации клеточных мембран. Такие структурные белки, как коллаген и эластин составляют основу соединительной и костной тканей высших животных и человека. Структурными белками, в частности, являются кератины кожи, волос, ногтей, шерсти, когтей, рогов, копыт, перьев, клювов, а также фиброин шелка, паутины.
Каталитически активными белками являются ферменты. Они ускоряют химические реакции, обеспечивая тем самым необходимые скорости протекания обменных процессов в клетке.
Многие белки, присущие отдельным живым организмам, выполняют специфические функции, среди которых наиболее важными являются транспортная, регуляторная, защитная, рецепторная, сократительная, запасная и некоторые др.
Транспортные белки переносят различные молекулы и ионы внутри организма. Например: гемоглобин — кислород от легких к тканям; миоглобин — кислород внутри клеток; сывороточный альбумин с током крови — жирные кислоты, а также ионы некоторых металлов. Ту же функцию выполняют специфические белки, транспортирующие различные вещества через клеточные мембраны.
Регуляторные белки участвуют в регуляции обмена веществ как внутри клеток, так и в целом организме. Например, такие сложные процессы, как биосинтез белков и нуклеиновых кислот, протекают под строгим «контролем» множества регуляторных белков. Специфические белковые ингибиторы регулируют активность многих ферментов.
Защитные белки формируют защитную систему живых организмов. Например, иммуноглобулины (антитела) и интерфероны предохраняют организм от проникновения в его внутреннюю среду вирусов, бактерий, чужеродных соединений, клеток и тканей. Белки свертывающей системы крови — фибриноген, тромбин — препятствуют потере крови при повреждениях кровеносных сосудов.
Рецепторные белки воспринимают сигналы, поступающие из внешней среды, и воздействуют на внутриклеточные процессы. Например, белки-рецепторы, сосредоточенные на поверхности клеточных мембран, избирательно взаимодействуют с регуляторными молекулами (например, гормонами).
Рецепторными белками являются родопсин, участвующий в зрительном акте, вкусовой сладкочувствительный и обонятельный белки.
Сократительные белки способны преобразовывать свободную химическую энергию в механическую работу. Например, белки мышц миозин и актин обеспечивают мышечное сокращение.
Запасные белки представляют собой резервный материал, предназначенный для питания развивающихся клеток. Запасными белками являются яичный альбумин, глиадин пшеницы,
Казеин кукурузы, казеин молока и многие другие. Запасные белки — существенный источник пищевого белка для человека.
Некоторые организмы вырабатывают токсические белки. Таковы яды змей, дифтерийный токсин, рицин семян клещевины, лектины семян бобовых и др.
ГРУППА 505 БИОЛОГИЯ 21,22
ТЕМА21:Мейоз.Образование половых клеток и оплодотворение.
Вспомните!
Где в организме человека происходит образование половых клеток?
Какой набор хромосом содержат гаметы? Почему?
Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный (гаплоидный) набор хромосом. При их слиянии (оплодотворении) происходит образование диплоидного набора, в котором каждая хромосома имеет пару – гомологичную хромосому. В каждой паре гомологичных хромосом одна хромосома получена от отца, а вторая – от матери.
У животных процесс образования половых клеток – гаметогенез – протекает в специальных органах – половых железах (гонадах). У большинства животных мужские половые клетки (сперматозоиды) образуются в семенниках, женские гаметы (яйцеклетки) – в яичниках. Развитие яйцеклеток называют овогенезом или оогенезом, а сперматозоидов – сперматогенезом.
Строение половых клеток.
Яйцеклетки – это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1–0,3 мм) и желтка практически не содержат.
Рис. 63. Сперматозоид млекопитающего: А – электронная фотография; Б – схема строения
Сперматозоиды впервые были описаны голландским естествоиспытателем А. Левенгуком в 1677 г. Он же и ввёл этот термин – сперматозоид (от греч. sperma – семя и zoon – живое существо), т. е. живое семя. Яйцеклетка млекопитающих была открыта в 1827 г. российским учёным К. М. Бэром.
Образование половых клеток. Развитие половых клеток подразделяют на несколько стадий: размножение, рост, созревание, а в процессе сперматогенеза выделяют ещё и стадию формирования (рис. 64).
Рис. 64. Гаметогенез у человека
Рис. 65. Фазы мейоза
Стадия размножения. На этой стадии клетки, формирующие стенки половых желёз, активно делятся митозом, образуя незрелые половые клетки. Эта стадия у мужчин начинается с наступлением половой зрелости и продолжается почти всю жизнь. У женщин образование первичных половых клеток завершается ещё в эмбриональном периоде, т. е. общее количество яйцеклеток, которые у женщины будут созревать в течение её репродуктивного периода, определяется уже на ранней стадии развития женского организма. На стадии размножения первичные половые клетки, как и все остальные клетки тела, диплоидны.
Стадия роста. На стадии роста, которая гораздо лучше выражена в овогенезе, происходит увеличение цитоплазмы клеток, накопление необходимых веществ и редупликация ДНК (удвоение хромосом).
Стадия созревания. Третья стадия – это мейоз. Мейоз – это особый способ деления клеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное.
Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом. В процессе двух мейотических делений из одной диплоидной клетки образуются четыре гаплоидные.
Мейоз состоит из двух последовательных делений, которым предшествует однократное удвоение ДНК, осуществлённое на стадии роста. В каждом делении мейоза выделяют четыре фазы, характерные и для митоза (профазу, метафазу, анафазу, телофазу), однако они отличаются некоторыми особенностями (рис. 65).
Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты или тетрады, состоящие из двух хромосом (четырёх хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками (кроссинговер), что приведёт к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет (рис. 66).
К концу профазы I ядерная оболочка разрушается.
В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.
В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом – число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.
Рис. 66. Перекрёст хромосом и обмен гомологичными участками
В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК.
Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.
В профазе II разрушается ядерная оболочка. В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.
В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуется четыре гаплоидные клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.
При сперматогенезе на стадии созревания в результате мейоза образуется четыре одинаковые клетки – предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.
Мейотические деления в овогенезе характеризуются рядом особенностей. Профаза I завершается ещё в эмбриональном периоде, т. е. к моменту рождения девочки в её организме уже имеется полный набор будущих яйцеклеток. Остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток. В результате первого деления мейоза образуется крупная клетка – предшественник яйцеклетки и маленькое, так называемое полярное, тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается – образуется зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.
Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.
Значение гаметогенеза. В результате гаметогенеза образуются половые клетки, содержащие гаплоидный набор хромосом, что позволяет при оплодотворении восстанавливать число хромосом, характерное для вида. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. Этого не происходит благодаря существованию особого процесса – мейоза, во время которого диплоидное число хромосом (2n) сокращается до гаплоидного (1n). Таким образом, биологическая роль мейоза заключается в поддержании постоянства числа хромосом в ряду поколений вида.
Вопросы для повторения и задания
1. Сравните строение мужских и женских половых клеток. В чём их сходство и отличия?
2. От чего зависит размер яйцеклеток? Объясните, почему яйцеклетки млекопитающих – одни из самых мелких.
3. Какие периоды выделяют в процессе развития половых клеток?
4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.
5. Перечислите отличия мейоза от митоза.
6. В чём заключается биологический смысл и значение мейоза?
Подумайте! Выполните!
1. Организм развился из неоплодотворённой яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?
2. Объясните, почему для обозначения мужских половых клеток существует два термина: спермии (например, у покрытосеменных растений) и сперматозоиды.
ТЕМА 22:Эмбриональное и постэмбриональное развитие организмов. Дифференцировка клеток. Развитие взрослого организма.
Онтогенез – индивидуальное развитие организма.
Эмбриональный период, именуемый эмбриогенезом, берёт начало с соединения ядер женской и мужской половых клеток и представляет собой процесс оплодотворения. Так, у тех организмов, которым свойственно внутриутробное развитие, эмбриогенез заканчивается рождением, у организмов с личиночного типа развитием – выходом из зародышевых оболочек.
Эмбриональный период развития имеет несколько стадий:
1.Зигота. При оплодотворении мужская половая клетка, достигая яйцеклетки, провоцирует её развитие. В ней начинают происходить химические и физические процессы, которые способствуют образованию симметрии яйцеклетки, ликвидации мембран ядер, в результате чего, ядра двух клеток соединяются, и образуется ДНК.
2. Дробление (первый этап развития зиготы) – начинается деление зиготы. В яйцеклетке, которая продвигается по фаллопиевой трубе, образуются борозды, благодаря чему происходит деление клеток. Образовавшиеся таким путём клетки называются морулы. Эту стадию проходят все многоклеточные организмы, которые размножаются половым путём, различным является только процесс деления клеток (радиальное, билатеральное, спиральное). Особенностью деления клеток является то, что они не растут. Этот процесс предполагает образование из одной крупной клетки (яйцеклетки) большого количества клеток мелких, с меньшим количеством цитоплазмы возле ядер. Эмбриональный период на этом не заканчивается, рассмотрим следующие стадии развития эмбриона.
3. Бластула (образование многоклеточной структуры в форме пузырька) – состоит из слоя клеток, которые именуются эмбриональными. Размер бластулы приближается к размерам яйцеклетки, поэтому при делении клеток, возрастает число ядер и ДНК.
4. Гаструляция – стадия движения клеток эмбриональных, в результате чего образуются три слоя зародышевых листов. Эта стадия характеризуется возрастанием синтеза белков и рибосом, в этот период происходит выпячивание полюса (вегетативного) внутрь бластулы, противоположные полюса соединяются, и полость бластулы ликвидируется. При этом образуется новая полость, которая получила название бластопор или первичный рот.
Таким образом, гаструляция является необходимым моментом развития эмбриона, поскольку эмбриональный период на этой стадии даёт возможность формированию его органов и тканей, а также систем организма. Следует отметить, формирование тканей и органов эмбриона в разные периоды имеют разную чувствительность к повреждающим воздействиям среды, например, к инфекциям, радиации или химическим агентам. Эти периоды повышенной чувствительности называют критическими, здесь повышается вероятность развития отклонений.
Так, эмбриональный период имеет несколько критических моментов. Рассмотрим их более детально: 1. Период бластулы (первые две недели после зачатия) – эмбрион либо погибает, либо продолжает развиваться без отклонений. В это время погибает большое количество эмбрионов (40%), которые начали своё развитие из мутированных половых клеток. 2. С двадцатого по семидесятый день после оплодотворения – период наибольшей ранимости эмбриона, поскольку начинают закладываться и формироваться все жизненно важные органы. 3. Плодный период характеризуется быстрым ростом плода. Здесь довольно часто могут возникать нарушения его развития только в тех органах, которые не закончили своего формирования. Таким образом, эмбриональный период онтогенеза характеризуется формированием и развитием эмбриона путём делением клеток, образования у него тканей, органов и систем. У различных живых организмов этот период разнится по времени, но в любом случае, начинается он с момента зачатия и заканчивается рождением новой жизни
Эктодерма - наружный слой кожи – эпителий, нервная система, эмаль зубов, производные кожи: волосы, ногти, когти, рога, копыта, чешуя рыб, пресмыкающихся, кожные железы, органы чувств: глаза, уши и др.
Энтодерма - эпителий внутренних органов: кишечника, жабр, легких. Пищеварительные железы – печень, поджелудочная железа.
Мезодерма хрящевая и костная ткань, мышцы, почки, сердечно - сосудистая система, половые железы, дентин зубов.
На развивающийся зародыш оказывает влияние окружающая среда. В большей степени эта зависимость проявляется у беспозвоночных животных. У плацентарных млекопитающих посредником между зародышем и окружающей средой является организм матери, от которого эмбрион получает питание, кислород, тепло.
Основателем современной эмбриологии является российский учёный К.М.Бэр. В 1828 г. он опубликовал сочинение «История развития животных».
Заслуга создания эволюционной эмбриологии также принадлежит замечательным русским ученым А.О. Ковалевскому, И.И. Мечникову, А.Н. Северцову, И.И. Шмальгаузену. Современным представлениям о зародышевых листках, наука обязана А.О. Ковалевскому, который обнаружил эктодерму, энтодерму и мезодерму у всех групп хордовых.
Немецкие ученые Ф. Мюллер и Э. Геккель сформулировали биогенетического закона, согласно которому онтогенез, т.е. индивидуальное развитие вида, есть краткое повторение филогенеза – исторического развития вида которому он относится. В 1866 Геккел вводит понятие онтогенез.
Российский ученый - академик А.Н. Северцов установил, что в индивидуальном развитии животных повторяются признаки не взрослых предков, а их зародышей.
На протяжение всего времени внутриутробного развития плод, напрямую связанный с организмом матери через уникальный орган – плаценту, находится в постоянной зависимости от состояния здоровья матери.
Влияние никотина.
В последнее время ведётся много споров на тему, влияет ли курение на развитие плода. Известно, что никотин, попадающий в кровь матери, легко проникает сквозь плаценту в кровеносную систему плода и вызывает сужение сосудов. Если поступление крови в плод ограничена, то снижается его снабжение кислородом и питательными веществами, что может вызвать задержку развития. У курящих женщин ребёнок при рождении весит в среднем на 300-350г меньше нормы. Существуют и другие проблемы, связанные с курением при беременности. У таких женщин чаще происходят преждевременные роды и выкидыши на поздних сроках беременности. На 30% выше вероятность ранней детской смертности и на 50% - вероятность развитие пороков сердце у детей, чьи матери не смогли во время беременности отказаться от сигарет.
Влияние алкоголя.
Столь же легко через плаценту проходит и алкоголь. Употребление спиртного при беременности может вызвать у ребенка состояние, известное, как алкогольный синдром плода. При этом синдроме наблюдается задержка умственного развития, микроцефалия (недоразвития головного мозга), расстройства поведения (повышенная возбудимость, невозможность сосредоточиться), снижение скорости роста, слабость мышц.
Влияние наркотических веществ.
Особенно чувствителен плод к вредному воздействию наркотических веществ. Если женщина имеет зависимость от наркотических препаратов, то её ребёнок, как правило, в эмбриональный период развитие приобретает такую же зависимость.
После рождения у него возникает синдром отмены (ломка), потому что исчезает постоянное поступление наркотика, который до этого ребёнок получал из крови матери через плаценту. Так как героин, кокаин и другие наркотики в первую очередь поражают нервную систему, у таких детей ещё в период внутриутробного развития может возникнуть поражение головного мозга, что приведёт в дальнейшем к задержке умственного развития или нарушения поведения.
Влияние лекарственных препаратов.
Лекарственные препараты, которые продаются в аптеке без рецептов, всегда тщательно проверяются на влияние вредных воздействий. Однако, если возможно, было бы желательно ограничить приём лекарств, особенно на ранних стадиях беременности и в критические для развития плода периоды, потому что многие лекарственные препараты очень легко проходят через плаценту.
Трагедия, которая потрясла Западную Европу связанна с талидомидом. Препарат в начале 60-х гг. ХХ в. выписывали многим беременным, страдающих от постоянных приступах тошноты. Довольно быстро выяснилось, что это лекарство вызывало нарушения развития конечностей у плода: они либо отсутствовали, либо были недоразвиты. Лекарство было запрещено, но несколько тысяч детей уже родились. Часто у новорожденных, чьи матери принимали талидомид, кисти или стопы росли прямо из туловища. Степень недоразвития конечностей зависела от того, на какой стадии беременности мать принимала лекарство.
Вирусные заболевания
Для развития плода представляют серьёзную опасность вирусные заболевания матери во время беременности. Наиболее опасны краснуха, гепатит В и ВИЧ-инфекции. В случае заражения краснухой на первом месяце беременности у 50% детей развиваются врождённые пороки: слепота, глухота, расстройства нервной системы и пороки сердца.
Соберите мозайку, что бы получился ответ на вопрос «Как называется процесс превращения личинки во взрослую особь?» | ||||||
Тип вариантов ответов: (Текстовые, Графические, Комбинированные): разрезать картинку на 6 квадратиков при сборке образуется слово метаморфоз Правильные ответы:
|
Онтогенез – индивидуальное развитие организма. Делится на два периода.
Эмбриональный - от образования зиготы до рождения или же выхода из яйцевых оболочек
Постэмбриональное развитие – период от рождения или выхода их яйцевых оболочек до смерти организма.
Подразделяется на три периода – ювенильный, пубертатный и период старения.
Первый период, ювенильный, продолжается до окончания полового созревания.
Мало кто задумывается о том, что каждый этап жизни имеет свое название. Так, науке известно эмбриональное и постэмбриональное развитие. Данные периоды сильно отличаются друг от друга и имеют разные характеристики
Тот момент, когда эмбрион покидает плодные оболочки, является переходным из эмбрионального периода в постэмбриональный. В народе это время называется рождением. Стоит отметить, что у разных живых организмов данный процесс сильно отличается. Виды развития живого организма
Постэмбриональный период может характеризоваться двумя видами развития. Науке известно прямое и непрямое преобразование живого организма. Прямое развитие К данному виду относится преобразование организма, который очень похож на взрослый. Так, постэмбриональное развитие человека имеет прямой вид. Сюда же можно отнести развитие животных и некоторых пресмыкающихся. После появления на свет эмбрион очень сильно похож на взрослый организм. Однако он отличается размерами и отсутствием навыков. характеристика постэмбрионального периода
Непрямое развитие, или метаморфоз. Постэмбриональный период может иметь непрямой вид (метаморфоз). В этом случае из плодных оболочек появляется организм, который сильно отличается от взрослого. Сюда можно отнести некоторых беспозвоночных, моллюсков и пресмыкающихся. В качестве примера можно взять обычную бабочку. Постэмбриональное развитие организма в этом случае характеризуется нахождением в виде личинки. Лишь после этого бабочка становится похожей на взрослую особь. постэмбриональное развитие человека Характеристика постэмбрионального периода (прямое развитие) Как уже говорилось выше, сразу после того, как новый организм покидает плодные оболочки, начинается новый этап в развитии.
Постэмбриональное развитие человека делится на несколько ступеней. Завершающим этапом является половое созревание. Рассмотрим основные ступени постэмбрионального периода.
1. Первый этап развития: от рождения до полугода На этом этапе малыш приспосабливается к новой окружающей среде. Он учится слышать и фокусировать свой взгляд на определенных вещах. Питание на этой ступени развития исключительно жидкое. Малыш еще не может самостоятельно кушать взрослую пищу и полностью зависит от матери. Некоторые дети более быстры в развитии, чем остальные. Они переходят на следующую степень постэмбрионального периода быстрее. Так, некоторые малыши в полгода уже могут стоять, сидеть и ползать. Однако это лишь физические навыки. Науке неизвестен еще случай, когда ребенок на данном этапе начал изъясняться понятным взрослому языком. Стоит отметить, что многие животные и пресмыкающиеся, которые проходят прямой путь постэмбрионального развития, живут примерно так же. Однако у них данный период может проходить гораздо быстрее, чем у человека.
2. Второй этап развития: до одного года На этом этапе маленький человек учится сидеть ползать и ходить. Данная ступень характеризуется приобретением физических навыков. Также молодой организм начинает постепенно привыкать к новой пище. Многие детки на этом этапе начинают издавать новые звуки. Так они учатся разговаривать на понятном взрослому человеку языке. Если ребенок развивается быстрее, то на данном этапе он может уже говорить некоторые слова или даже простые предложения. Пресмыкающиеся и животные в этот период уже полностью готовы ко взрослой жизни. Они сами могут добывать себе еду и уже не зависят от взрослых особей. постэмбриональный период
3. Третий период: рост и обучение Человеческий организм характеризуется самым длительным постэмбриональным развитием. На данной ступени ребенок уже вполне может сам себя обслуживать, однако прожить без родителей ему еще очень трудно. В обычной жизни дети на этой ступени посещают дошкольные, а потом и школьные учреждения. Они растут, развиваются и обучаются всему, что пригодится им во взрослой жизни. Млекопитающие и животные на этом этапе уже полностью прошли постэмбриональный период и считаются взрослыми особями.
4. Четвертый период: половое созревание Итак, какое развитие называют постэмбриональным, вы уже знаете. У человека оно заканчивается примерно в 16-20 лет. На данной ступени начинают работать важные части организма. Гипофиз и надпочечники вырабатывают определенные гормоны. У женщин начинают функционировать яичники и появляется менструация. Мужчины же приобретают половую зрелость и способны продолжать свой род. Завершается постэмбриональный период переходом во взрослую жизнь. Человек уже в состоянии самостоятельно жить и создавать собственную семью.
Подведение итогов и заключение теперь вам известно, какое развитие называют постэмбриональным. Стоит отметить, что непрямое преобразование происходит значительно быстрее, нежели прямой постэмбриональный период. Человек претерпевает самое долгое течение данного этапа. Однако человеческие навыки позволяют выжить даже в самых трудных условиях. Этого нельзя сказать о пресмыкающихся или животных. За развитием человека в постэмбриональном периоде следят некоторые врачи: педиатр, невролог и другие. Также особенно внимательно наблюдают родители малыша. Каждый человек должен знать, что такое постэмбриональный период.
ГРУППА 401 ЭКОЛОГИЯ 29
ТЕМА 29:Биологическое разнообразие как основное условие устойчивости популяций, биоценозов и экосистем.