вторник, 21 сентября 2021 г.

 ВТОРНИК. 21.09.21 г. 206, 408, 401, 403

ГРУППА 206 БИОЛОГИЯ

ТЕМА: Ядро. Прокариоты и эукариоты.

Ядро. Прокариоты и эукариоты

Строение ядра. В отличие от некоторых низших растений и простейших, клетки которых содержат несколько ядер, высшие животные, растения и грибы состоят из клеток, в которых находится одно ядро. Оно имеет форму шара с диаметром от 3 до 10 мкм (рис. 11, 8). Ядро окружено оболочкой, состоящей из двух мембран, каждая из которых подобна плазматической мембране. Через определенные интервалы обе мембраны сливаются друг с другом, образуя отверстия диаметром 70 нм — ядерные поры. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Размеры пор позволяют проникать из ядра в цитоплазму даже крупным молекулам РНК и частицам рибосом.

В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать в ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. Кроме того, в состав хромосом входят различные белки. В период между делениями клетки хромосомы представляют собой длинные, очень тонкие нити, увидеть которые можно только в электронный микроскоп.

Схема упаковки ДНК в хромосоме

Рис. 17. Схема упаковки ДНК в хромосоме

Средняя длина молекулы ДНК, составляющей основу каждой из 46 хромосом человека, около 5 см. Как же упакованы эти молекулы в ядре с диаметром всего около 5 мкм? Выделяют четыре уровня упаковки ДНК в хромосоме (рис. 17). На первом уровне двойная спираль ДНК диаметром 2 нм наматывается на белковый комплекс, содержащий 8 молекул гистонов — белков с повышенным содержанием положительно заряженных аминокислотных остатков лизина и аргинина. Образуется структура диаметром 11 нм, напоминающая бусы на нитке. Каждая «бусина» — нуклеосома содержит около 150 пар нуклеотидов. На втором уровне нуклеосомы сближаются с помощью гистона, отличающегося от тех, которые входят в состав нуклеосомы. Образуется фибрилла диаметром 30 нм. На третьем уровне упаковки формируются петли, содержащие от 20 ООО до 80 000 пар нуклеотидов ДНК. В «устье» каждой петли находятся белки, которые узнают определенные нуклеотидные последовательности и при этом имеют сродство друг к другу. Типичная хромосома млекопитающих может содержать до 2500 петель. Перед делением клетки молекулы ДНК удваиваются, петли укладываются в стопки, хромосома утолщается и становится видимой в световой микроскоп. На этом четвертом уровне упаковки каждая хромосома состоит из двух идентичных хроматид, каждая из которых содержит по одной молекуле ДНК. Участок соединения хроматид носит название центромеры. В целом «укорочение» ДНК достигает 104. Это соответствует тому, как если бы нитку длиной с Останкинскую башню (500 м) упаковали в спичечный коробок (5 см).

В ядрах всегда присутствует одно или несколько ядрышек (рис. 11, 9). Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы.

Ядро благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Ведущая роль ядра в наследственности. Итак, в ядре клеток заключены хромосомы, которые содержат ДНК — хранилище наследственной информации. Этим определяется ведущая роль клеточного ядра в наследственности. Данное важнейшее положение современной биологии не просто вытекает из логических рассуждений, оно доказано рядом точных опытов. Приведем один из них. В Средиземном море обитает несколько видов одноклеточных зеленых водорослей — ацетабулярий. Они состоят из тонких стебельков, на верхних концах которых располагаются шляпки. По форме шляпок различают виды ацетабулярий.

В нижнем конце стебелька ацетабулярии находится ядро. У ацетабулярии одного вида искусственно удалили шляпку и ядро, а к стебельку подсадили ядро, извлеченное у ацетабулярии другого вида. Что же оказалось? Через некоторое время на водоросли с подсаженным ядром образовалась шляпка, характерная для того вида, которому принадлежало пересаженное ядро (рис. 18).

Схема опыта с ацетобулярией

Рис. 18. Схема опыта с ацетобулярией
А и Б - разные виды ацетобулярий

Хотя ядру принадлежит ведущая роль в явлениях наследственности, из этого, однако, не следует, что только ядро ответственно за передачу всех свойств из поколения в поколение. В цитоплазме также существуют органоиды (хлоропласты и митохондрии), содержащие ДНК и способные передавать наследственную информацию.

Таким образом, именно в ядре каждой клетки содержится основная наследственная информация, необходимая для развития целого организма со всем разнообразием его свойств и признаков. Именно ядро играет центральную роль в явлениях наследственности.

Как же обстоит дело у тех организмов, клетки которых не имеют ядер?

Прокариоты и эукариоты. Все организмы, имеющие клеточное строение, делятся на две группы: доядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Цитоплазма прокариот по сравнению с цитоплазмой эукариотических клеток значительно беднее по составу структур. Там находятся многочисленные, более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хлоропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.

Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

Сравнительная характеристика прокариот и эукариот

Сравнительная характеристика прокариот и эукариот

Сравнительная характеристика клеток эукариот. По строению различные эукариотические клетки сходны. Но наряду со сходством между клетками организмов различных царств живой природы имеются заметные отличия. Они касаются как структурных, так и биохимических особенностей.

Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.

В клетках представителей царства грибов клеточная стенка обычно состоит из хитина — полисахарида, из которого также построен наружный скелет членистоногих животных. Имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Запасным углеводом в клетках грибов является гликоген.

В клетках животных отсутствует плотная клеточная стенка, нет пластид. Нет в животной клетке и центральной вакуоли. Центриоль характерна для клеточного центра животных клеток. Резервным углеводом в клетках животных также является гликоген.


  1. Покажите связь строения ядра с его функцией в клетке.
  2. Как можно доказать ведущую роль ядра в клетке?
  3. Имеются ли принципиальные различия между прокариотами и эукариотами? Поясните ответ.

ТЕМА: Лаб.работа №3 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом».



ГРУППА 408 БИОЛОГИЯ
ТЕМАНуклеиновые кислоты.

СНАЧАЛА ВНИМАТЕЛЬНО ПОСМОТРИТЕ ВИДЕО. ЗАТЕМ ПРОЧИТАЙТЕ НИЖЕ ТЕКСТ, ЗАПИШИТЕ ГЛАВНОЕ.

Строение нуклеиновых кислот

В отличие от белков, углеводов и липидов, нуклеиновые кислоты никогда не накапливаются в клетке в больших количествах, и обнаружить их можно только с помощью специальных химических методов. Поэтому они были открыты только во второй половине XIX в., а по-настоящему изучить их роль в процессах жизнедеятельности удалось лишь во второй половине XX в. Так как первоначально они были обнаружены только в ядрах, им дали название нуклеиновые (от лат. nucleus — ядро). 

Нуклеиновые кислоты  — биологические полимеры, мономерами которым служат нуклеотиды. Связи между нуклеотидами легко подвергаются гидролизу (распаду при реакции с водой). Каждый нуклеотид состоит из остатков углевода, фосфорной кислоты и азотистого основания (рис. 1).

Рис. 1. Строение нуклеотида

Углеводный компонент представлен пентозами — рибозой (в РНК) или дезоксирибозой (в ДНК), у которой отсутствует кислород при втором атоме углерода (рис. 2).

Рис. 2. Пентозы

Остаток фосфорной кислоты образует сложноэфирную связь с гидроксилом при 5-м атоме углерода в сахаре. Соединение нуклеотидов в полимер происходит путем образования фосфатом одного нуклеотида второй эфирной связи с гидроксилом при 3-м углероде соседнего нуклеотида. Такая связь получила название фосфодиэфирной.

Таким образом, нуклеиновые кислоты представляют собой цепь из чередующихся остатков пентозы и фосфорной кислоты (рис. 3).

Кроме того, от первого атома углерода каждой пентозы отходит в бок азотистое основание. В этом нуклеиновые кислоты сходны с белками, в которых полимерная цепь образована пептидными группировками с отходящими от них боковыми радикалами аминокислот. Так же, как и у белков, в нуклеиновых кислотах два конца цепи неодинаковы. С одной стороны имеется не занятое связью пятое положение рибозы, этот конец называют 5’-концом. С противоположной стороны не занят связью третий гидроксил сахара, этот конец обозначают как 3’-конец. 5’-конец считается началом цепи, а 3’-конец — ее окончанием.

Рис. 3. Нуклеиновые кислоты

В одной молекуле нуклеиновой кислоты присутствует только один вид пентозы. Те молекулы, которые содержат рибозу, называют рибонуклеиновой кислотой, или сокращенно РНК. Нуклеиновую кислоту, содержащие дезоксирибозу, называют дезоксирибонуклеиновой кислотой, или ДНК.

Помимо пентозы, нуклеиновые кислоты отличаются азотистыми основаниями. Они представляют собой ароматические циклы, содержащие несколько атомов азота и заместители при определенных атомах углерода.

По структуре гетероциклов азотистые основания делятся на две группы.

Пиримидиновые азотистые основания: урацил, тимин и цитозин. Тимин отличается от урацила только наличием метильной группы, что незначительно меняет его свойства. В РНК встречаются урацил и цитозин, а в ДНК — тимин и цитозин. 

Пуриновые основания: аденин и гуанин. Во всех нуклеиновых кислотах присутствуют оба пурина.

Рис. 4. Азотистые основания                

За счет чередования различных нуклеотидов в цепи нуклеиновые кислоты могут достигать огромного многообразия (количество видов полимеров равно числу видов мономеров в степени, равной числу мономеров в цепи). И хотя число мономеров в нуклеиновых кислотах меньше, чем в белках, степень полимерности, особенно у ДНК, намного выше. Длина цепей ДНК, входящих в хромосомы разных организмов, составляет от миллионов до сотен миллионов нуклеотидов.

Молекулы РНК обычно короче, их длина — от нескольких десятков до нескольких десятков тысяч нуклеотидов. А при длине цепи 500 нуклеотидов количество возможных комбинаций составляет более 10 300.

принцип комплЕментарности

При анализе содержания азотистых оснований в ДНК из различных организмов Эрвин Чаргафф обнаружил определенные закономерности, позднее названные правилами Чаргаффа.

Молярное содержание аденина всегда равно молярному содержанию тимина, а молярное содержание гуанина — молярному содержанию цитозина.

Количество пуринов равнялось количеству пиримидинов, а отношение А+Т/Г+Ц было различным у разных видов живых организмов. 

Это указывало на возможные взаимодействия оснований в ДНК между собой.

На основании правил Чаргаффа и предварительных результатов рентгеноструктурного анализа Джеймс Уотсон и Френсис Крик в 1953 г. предложили двуспиральную модель структуры ДНК.

Согласно этой модели молекула ДНК состоит из двух полинуклеотидных цепей, соединенных между собой азотистыми основаниями. При этом аденин одной цепи всегда взаимодействует с тимином в другой, и наоборот. Точно так же гуанин одной цепи всегда связан с цитозином в другой (рис. 6). 

Рис. 5. Образование водородных связей между азотистыми основаниями


Такие пары оснований удерживаются за счет образования между основаниями водородных связей:

  • пара А–Т образует 2 водородные связи;
  • пара Г–Ц образует 3 водородные связи.

Главной особенностью пар А–Т и Г–Ц является их одинаковая геометрия. Это позволяет построить двуспиральную молекулу с постоянным расстоянием между цепями, построенными остатками сахара и фосфорной кислоты. Образование любых других пар приводит к нарушению правильной структуры.

Такое взаимодействие оснований, при котором они дополняют друг друга до определенной структуры, одинаковой для всех пар, получило название принципа комплементарности.

Пары аденин и тимин, гуанин и цитозин называются комплементарными парами, а две цепочки нуклеиновых кислот, в которых все основания образуют комплементарные пары — комплементарными цепочками. Таким образом, каждая молекула ДНК состоит из двух комплементарных цепочек полинуклеотидов (рис. 6).

Рис. 6. Принцип комплиментарности

Важной особенностью структуры двойной спирали ДНК является то, что комплементарные цепи направлены в противоположные стороны, т. е. 5’-конец одной цепи связан комплементарными основаниями с 3’-концом другой цепи, и наоборот. Основания плотно слипаются своими плоскостями, что делает связь между цепочками еще более прочной. Такое слипание получило название стэкинг-взаимодействия. В результате в центре молекулы ДНК находится как бы стержень, построенный из азотистых оснований, а по краям он обвит двумя нитями, состоящими из чередующихся остатков дезоксирибозы и фосфорной кислоты.

сравнение ДНК и РНК

Нуклеиновая кислотаСтроениеФункцииОсобенности
ДНК

азотистое основание:

аденин (А)

тимин (Т)

гуанин (Г)

цитозин (Ц)

углевод: дезоксирибоза

остаток фосфорной кислоты

хранение и передача наследственной информации

двойная спираль (по принципу комплементарности);

способность к репликации (самоудвоению)

РНК

азотистое основание:

аденин (А)

урацил (У)

гуанин (Г)

цитозин (Ц)

углевод:

рибоза

остаток фосфорной кислоты

 биосинтез белка одинарная цепочка нуклеотидов


ГРУППА 401 БИОЛОГИЯ
ТЕМА: Углеводы. Липиды.

Строение, примеры и функции углеводов

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой Cn(H2O)m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С5Н10О4) отличается от рибозы (С5Н10О5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Строение рибозы

Глюкоза, или виноградный сахар (С6Н12О6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Строение глюкозы

Глюкоза — это:

  1. один из самых распространенных моносахаридов,
  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
  3. мономер многих олигосахаридов и полисахаридов,
  4. необходимый компонент крови.

Фруктоза, или фруктовый сахар, относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной.

Сахароза, или тростниковый, или свекловичный сахар, — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10–18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар, — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар, — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2–8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С6Н10О5)n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С6Н10О5)n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

Целлюлоза (С6Н10О5)n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Целлюлоза

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

Функции углеводов

ФункцияПримеры и пояснения
ЭнергетическаяОсновной источник энергии для всех видов работ, происходящих в клетках. При расщеплении 1 г углеводов выделяется 17,6 кДж.
СтруктурнаяИз целлюлозы состоит клеточная стенка растений, из муреина — клеточная стенка бактерий, из хитина — клеточная стенка грибов и покровы членистоногих.
ЗапасающаяРезервным углеводом у животных и грибов является гликоген, у растений — крахмал, инулин.
ЗащитнаяСлизи предохраняют кишечник, бронхи от механических повреждений. Гепарин предотвращает свертывание крови у животных и человека.

Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам, говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (–СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок –СН2–. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (–СН=СН–), такую жирную кислоту называют ненасыщенной. Если жирная кислота не имеет двойных связей, ее называют насыщенной. При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты, то при 20°С они — твердые; их называют жирами, они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты, то при 20 °С они — жидкие; их называют маслами, они характерны для растительных клеток.

Триглицериды

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.

 

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды. К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Функции липидов

ФункцияПримеры и пояснения
ЭнергетическаяОсновная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
СтруктурнаяФосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
ЗапасающаяЖиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.
ЗащитнаяПрослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.
ТеплоизоляционнаяПодкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
РегуляторнаяГиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.
Источник метаболической водыПри окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
КаталитическаяЖирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

 

ГРУППА 403 БИОЛОГИЯ
ТЕМА:ТЕМА: Ядро. Прокариоты и эукариоты.

Ядро. Прокариоты и эукариоты

Строение ядра. В отличие от некоторых низших растений и простейших, клетки которых содержат несколько ядер, высшие животные, растения и грибы состоят из клеток, в которых находится одно ядро. Оно имеет форму шара с диаметром от 3 до 10 мкм (рис. 11, 8). Ядро окружено оболочкой, состоящей из двух мембран, каждая из которых подобна плазматической мембране. Через определенные интервалы обе мембраны сливаются друг с другом, образуя отверстия диаметром 70 нм — ядерные поры. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Размеры пор позволяют проникать из ядра в цитоплазму даже крупным молекулам РНК и частицам рибосом.

В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать в ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. Кроме того, в состав хромосом входят различные белки. В период между делениями клетки хромосомы представляют собой длинные, очень тонкие нити, увидеть которые можно только в электронный микроскоп.

Схема упаковки ДНК в хромосоме

Рис. 17. Схема упаковки ДНК в хромосоме

Средняя длина молекулы ДНК, составляющей основу каждой из 46 хромосом человека, около 5 см. Как же упакованы эти молекулы в ядре с диаметром всего около 5 мкм? Выделяют четыре уровня упаковки ДНК в хромосоме (рис. 17). На первом уровне двойная спираль ДНК диаметром 2 нм наматывается на белковый комплекс, содержащий 8 молекул гистонов — белков с повышенным содержанием положительно заряженных аминокислотных остатков лизина и аргинина. Образуется структура диаметром 11 нм, напоминающая бусы на нитке. Каждая «бусина» — нуклеосома содержит около 150 пар нуклеотидов. На втором уровне нуклеосомы сближаются с помощью гистона, отличающегося от тех, которые входят в состав нуклеосомы. Образуется фибрилла диаметром 30 нм. На третьем уровне упаковки формируются петли, содержащие от 20 ООО до 80 000 пар нуклеотидов ДНК. В «устье» каждой петли находятся белки, которые узнают определенные нуклеотидные последовательности и при этом имеют сродство друг к другу. Типичная хромосома млекопитающих может содержать до 2500 петель. Перед делением клетки молекулы ДНК удваиваются, петли укладываются в стопки, хромосома утолщается и становится видимой в световой микроскоп. На этом четвертом уровне упаковки каждая хромосома состоит из двух идентичных хроматид, каждая из которых содержит по одной молекуле ДНК. Участок соединения хроматид носит название центромеры. В целом «укорочение» ДНК достигает 104. Это соответствует тому, как если бы нитку длиной с Останкинскую башню (500 м) упаковали в спичечный коробок (5 см).

В ядрах всегда присутствует одно или несколько ядрышек (рис. 11, 9). Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы.

Ядро благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Ведущая роль ядра в наследственности. Итак, в ядре клеток заключены хромосомы, которые содержат ДНК — хранилище наследственной информации. Этим определяется ведущая роль клеточного ядра в наследственности. Данное важнейшее положение современной биологии не просто вытекает из логических рассуждений, оно доказано рядом точных опытов. Приведем один из них. В Средиземном море обитает несколько видов одноклеточных зеленых водорослей — ацетабулярий. Они состоят из тонких стебельков, на верхних концах которых располагаются шляпки. По форме шляпок различают виды ацетабулярий.

В нижнем конце стебелька ацетабулярии находится ядро. У ацетабулярии одного вида искусственно удалили шляпку и ядро, а к стебельку подсадили ядро, извлеченное у ацетабулярии другого вида. Что же оказалось? Через некоторое время на водоросли с подсаженным ядром образовалась шляпка, характерная для того вида, которому принадлежало пересаженное ядро (рис. 18).

Схема опыта с ацетобулярией

Рис. 18. Схема опыта с ацетобулярией
А и Б - разные виды ацетобулярий

Хотя ядру принадлежит ведущая роль в явлениях наследственности, из этого, однако, не следует, что только ядро ответственно за передачу всех свойств из поколения в поколение. В цитоплазме также существуют органоиды (хлоропласты и митохондрии), содержащие ДНК и способные передавать наследственную информацию.

Таким образом, именно в ядре каждой клетки содержится основная наследственная информация, необходимая для развития целого организма со всем разнообразием его свойств и признаков. Именно ядро играет центральную роль в явлениях наследственности.

Как же обстоит дело у тех организмов, клетки которых не имеют ядер?

Прокариоты и эукариоты. Все организмы, имеющие клеточное строение, делятся на две группы: доядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

Цитоплазма прокариот по сравнению с цитоплазмой эукариотических клеток значительно беднее по составу структур. Там находятся многочисленные, более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хлоропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.

Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

Сравнительная характеристика прокариот и эукариот

Сравнительная характеристика прокариот и эукариот

Сравнительная характеристика клеток эукариот. По строению различные эукариотические клетки сходны. Но наряду со сходством между клетками организмов различных царств живой природы имеются заметные отличия. Они касаются как структурных, так и биохимических особенностей.

Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.

В клетках представителей царства грибов клеточная стенка обычно состоит из хитина — полисахарида, из которого также построен наружный скелет членистоногих животных. Имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Запасным углеводом в клетках грибов является гликоген.

В клетках животных отсутствует плотная клеточная стенка, нет пластид. Нет в животной клетке и центральной вакуоли. Центриоль характерна для клеточного центра животных клеток. Резервным углеводом в клетках животных также является гликоген.


  1. Покажите связь строения ядра с его функцией в клетке.
  2. Как можно доказать ведущую роль ядра в клетке?
  3. Имеются ли принципиальные различия между прокариотами и эукариотами? Поясните ответ.

ТЕМА: Лаб.работа №3 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом».