вторник, 7 февраля 2023 г.

07.02.23 г. Вторник, 508,505,501

  Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 06.02.23г.-10.02.23г.

 Пн.06,02: 306, 401, 401, 408 

Вт. 07,02: 508, 505, 505, 501

Ср. 08.02: 406, 505, 401, ---- 

 Чт. 09.02: 505, 501, 306, 508

 Пт. 10.02: 401, 505,  ----, 501   

Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту:  rimma.lu@gmail.com      Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

Моя почта   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 508 БИОЛОГИЯ  27,28

ТЕМА 27,28: Мейоз. Образование половых клеток и оплодотворение.

Образование половых клеток. Мейоз

Вспомните!

Где в организме человека происходит образование половых клеток?

Какой набор хромосом содержат гаметы? Почему?

Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный (гаплоидный) набор хромосом. При их слиянии (оплодотворении) происходит образование диплоидного набора, в котором каждая хромосома имеет пару – гомологичную хромосому. В каждой паре гомологичных хромосом одна хромосома получена от отца, а вторая – от матери.

У животных процесс образования половых клеток – гаметогенез – протекает в специальных органах – половых железах (гонадах). У большинства животных мужские половые клетки (сперматозоиды) образуются в семенниках, женские гаметы (яйцеклетки) – в яичниках. Развитие яйцеклеток называют овогенезом или оогенезом, а сперматозоидов – сперматогенезом.

Строение половых клеток.

Яйцеклетки – это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1–0,3 мм) и желтка практически не содержат.

 Сперматозоиды – мелкие подвижные клетки, у человека их длина всего около 60 мкм. У разных организмов они отличаются формой и размерами, но, как правило, все сперматозоиды имеют головку, шейку и хвост, обеспечивающий их подвижность. В головке сперматозоида находится ядро, содержащее хромосомы, и акросома – особый пузырёк с ферментами, необходимыми для растворения оболочки яйцеклетки. В шейке сосредоточены митохондрии, которые обеспечивают движущийся сперматозоид энергией (рис. 63).

Рис. 63. Сперматозоид млекопитающего: А – электронная фотография; Б – схема строения

Сперматозоиды впервые были описаны голландским естествоиспытателем А. Левенгуком в 1677 г. Он же и ввёл этот термин – сперматозоид (от греч. sperma – семя и zoon – живое существо), т. е. живое семя. Яйцеклетка млекопитающих была открыта в 1827 г. российским учёным К. М. Бэром.

Образование половых клеток. Развитие половых клеток подразделяют на несколько стадий: размножение, рост, созревание, а в процессе сперматогенеза выделяют ещё и стадию формирования (рис. 64).

Рис. 64. Гаметогенез у человека




Рис. 65. Фазы мейоза

Стадия размножения. На этой стадии клетки, формирующие стенки половых желёз, активно делятся митозом, образуя незрелые половые клетки. Эта стадия у мужчин начинается с наступлением половой зрелости и продолжается почти всю жизнь. У женщин образование первичных половых клеток завершается ещё в эмбриональном периоде, т. е. общее количество яйцеклеток, которые у женщины будут созревать в течение её репродуктивного периода, определяется уже на ранней стадии развития женского организма. На стадии размножения первичные половые клетки, как и все остальные клетки тела, диплоидны.

Стадия роста. На стадии роста, которая гораздо лучше выражена в овогенезе, происходит увеличение цитоплазмы клеток, накопление необходимых веществ и редупликация ДНК (удвоение хромосом).

Стадия созревания. Третья стадия – это мейоз. Мейоз – это особый способ деления клеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное.

Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом. В процессе двух мейотических делений из одной диплоидной клетки образуются четыре гаплоидные.

Мейоз состоит из двух последовательных делений, которым предшествует однократное удвоение ДНК, осуществлённое на стадии роста. В каждом делении мейоза выделяют четыре фазы, характерные и для митоза (профазу, метафазу, анафазу, телофазу), однако они отличаются некоторыми особенностями (рис. 65).

Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты или тетрады, состоящие из двух хромосом (четырёх хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками (кроссинговер), что приведёт к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет (рис. 66).

К концу профазы I ядерная оболочка разрушается.

В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом – число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.

Рис. 66. Перекрёст хромосом и обмен гомологичными участками

В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК.

Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.

В профазе II разрушается ядерная оболочка. В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.

В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуется четыре гаплоидные клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.

При сперматогенезе на стадии созревания в результате мейоза образуется четыре одинаковые клетки – предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.

Мейотические деления в овогенезе характеризуются рядом особенностей. Профаза I завершается ещё в эмбриональном периоде, т. е. к моменту рождения девочки в её организме уже имеется полный набор будущих яйцеклеток. Остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток. В результате первого деления мейоза образуется крупная клетка – предшественник яйцеклетки и маленькое, так называемое полярное, тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается – образуется зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.

Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.

Значение гаметогенеза. В результате гаметогенеза образуются половые клетки, содержащие гаплоидный набор хромосом, что позволяет при оплодотворении восстанавливать число хромосом, характерное для вида. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. Этого не происходит благодаря существованию особого процесса – мейоза, во время которого диплоидное число хромосом (2n) сокращается до гаплоидного (1n). Таким образом, биологическая роль мейоза заключается в поддержании постоянства числа хромосом в ряду поколений вида.

Вопросы для повторения и задания

1. Сравните строение мужских и женских половых клеток. В чём их сходство и отличия?

2. От чего зависит размер яйцеклеток? Объясните, почему яйцеклетки млекопитающих – одни из самых мелких.

3. Какие периоды выделяют в процессе развития половых клеток?

4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

5. Перечислите отличия мейоза от митоза.

6. В чём заключается биологический смысл и значение мейоза?

Подумайте! Выполните!

1. Организм развился из неоплодотворённой яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

2. Объясните, почему для обозначения мужских половых клеток существует два термина: спермии (например, у покрытосеменных растений) и сперматозоиды.

ГРУППА 505 БИОЛОГИЯ 19,20

ТЕМА 19:Бесполое и половое размножение.Деление клетки. Размножение — свойство живых организмов воспроизводить себе подобных. Существуют два основных способа размножения — бесполое и половое.

БЕСПОЛОЕ РАЗМНОЖЕНИЕ

Бесполое размножение осуществляется при участии лишь одной родительской особи и происходит без образования гамет. Дочернее поколение у одних видов возникает из одной или группы клеток материнского организма, у других видов — в специализированных органах. Различают следующие способы бесполого размножения: деление, почкование, фрагментация, полиэмбриония, споро­образование, вегетативное размножение.

Бесполое размножение

Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток. Можно выделить: а) простое бинарное деление (прокариоты), б) митотическое бинарное деление (простейшие, одноклеточные водоросли), в) множественное деление, или шизогонию (малярийный плазмодий, трипаносомы). Во время деления парамеции (1) микронуклеус делится митозом, макронуклеус — амитозом. Во время шизогонии (2) сперва многократно митозом делится ядро, затем каждое из дочерних ядер окружается цитоплазмой, и формируются несколько самостоятельных организмов.


Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи (3). Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).

Фрагментация (4) — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.

Полиэмбриония — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается эмбрион (монозиготные близнецы).

Вегетативное размножение — способ бесполого размножения, при котором новые особи образуются или из частей вегетативного тела материнской особи, или из особых структур (корневище, клубень и др.), специально предназначенных для этой формы размножения. Вегетативное размножение характерно для многих групп растений, используется в садоводстве, огородничестве, селекции растений (искусственное вегетативное размножение).

 

Вегетативный органСпособ вегетативного размноженияПримеры
КореньКорневые черенкиШиповник, малина, осина, ива, одуванчик
Корневые отпрыскиВишня, слива, осот, бодяк, сирень
Надземные части побеговДеление кустовФлокс, маргаритка, примула, ревень
Стеблевые черенкиВиноград, смородина, крыжовник
ОтводкиКрыжовник, виноград, черемуха
Подземные части побеговКорневищеСпаржа, бамбук, ирис, ландыш
КлубеньКартофель, седмичник, топинамбур
ЛуковицаЛук, чеснок, тюльпан, гиацинт
КлубнелуковицаГладиолус, крокус
ЛистЛистовые черенкиБегония, глоксиния, колеус

 

Спорообразование (6) — размножение посредством спор. Споры — специализированные клетки, у большинства видов образуются в особых органах — спорангиях. У высших растений образованию спор предшествует мейоз.

Клонирование — комплекс методов, используемых человеком для получения генетически идентичных копий клеток или особей. Клон — совокупность клеток или особей, произошедших от общего предка путем бесполого размножения. В основе получения клона лежит митоз (у бактерий — простое деление).

ПОЛОВОЕ РАЗМНОЖЕНИЕ

Половое размножение

Половое размножение осуществляется при участии двух родительских особей (мужской и женской), у которых в особых органах образуются специализированные клетки — гаметы. Процесс формирования гамет называется гаметогенезом, основным этапом гаметогенеза является мейоз. Дочернее поколение развивается из зиготы — клетки, образовавшейся в результате слияния мужской и женской гамет. Процесс слияния мужской и женской гамет называется оплодотворением. Обязательным следствием полового размножения является перекомбинация генетического материала у дочернего поколения.

В зависимости от особенностей строения гамет, можно выделить следующие формы полового размножения: изогамию, гетерогамию и овогамию.

Изогамия (1) — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.

Гетерогамия (2) — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.

Овогамия (3) — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками, мужские гаметы, если имеют жгутики, — сперматозоидами, если не имеют, — спермиями.

Овогамия характерна для большинства видов животных и растений. Изогамия и гетерогамия встречаются у некоторых примитивных организмов (водоросли). Кроме вышеперечисленных, у некоторых водорослей и грибов имеются формы размножения, при которых половые клетки не образуются: хологамия и конъюгация. При хологамии происходит слияние друг с другом одноклеточных гаплоидных организмов, которые в данном случае выступают в роли гамет. Образовавшаяся диплоидная зигота затем делится мейозом с образованием четырех гаплоидных организмов. При конъюгации (4) происходит слияние содержимого отдельных гаплоидных клеток нитевидных талломов. По специально образующимся каналам содержимое одной клетки перетекает в другую, образуется диплоидная зигота, которая обычно после периода покоя также делится мейозом.


ТЕМА 20:Митоз.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.




Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.


ГРУППА 505 ХИМИЯ 20 

ТЕМА 20:Чистые вещества и смеси. Понятие о смеси веществ. Гомогенные и гетерогенные смеси.

 Мы живем среди химических веществ. Мы вдыхает воздух, а это смесь газов (азота, кислорода и других), выдыхаем углекислый газ. Умываемся водой - это еще одно вещество, самое распространенное на Земле. Пьём молоко - смесь воды с мельчайшими капельками молочного жира, и не только: здесь еще есть молочный белок казеин, минеральные соли, витамины и даже сахар, но не тот, с которым пьют чай, а особый, молочный - лактоза. Едим яблоки, которые состоят из целого набора химических веществ - здесь и сахар, и яблочная кислота, и витамины... Когда прожеванные кусочки яблока попадают в желудок, на них начинают действовать пищеварительные соки человека, которые помогают усваивать все вкусные и полезные вещества не только яблока, но и любой другой пищи. 

Мы не только живем среди химических веществ, но и сами из них состоим. Каждый человек - его кожа, мышцы, кровь, зубы, кости, волосы построены из химических веществ, как дом из кирпичей. 

Азот, кислород, сахар, витамины – вещества природного, естественного происхождения. Стекло, резина, сталь – это тоже вещества, точнее, материалы (смеси веществ). И стекло, и резина - искусственного происхождения, в природе их не было. Совершенно чистые вещества в природе не встречаются или встречаются очень редко.

Чем же отличаются чистые вещества от смесей веществ?

Индивидуальное чистое вещество обладает определённым набором характеристических свойств (постоянными физическими свойствами). 

Только чистая дистиллированная вода имеет tпл = 0 °С, tкип= 100 °С, не имеет вкуса. 

Морская вода замерзает при более низкой, а закипает при более высокой температуре, вкус у нее горько-соленый. 

Вода Черного моря замерзает при более низкой, а закипает при более высокой температуре, чем вода Балтийского моря. Почему? Дело в том, что в морской воде содержатся другие вещества, например растворенные соли, т.е. она представляет собой смесь различных веществ, состав которой меняется в широких пределах, свойства же смеси не являются постоянными. Определение понятия «смесь» было дано в XVII в. английским ученым Робертом Бойлем: «Смесь – целостная система, состоящая из разнородных компонентов».

Чистые вещества и смеси

Содержание

  • Чистые вещества и смеси
  • Однородные и неоднородные смеси

Большинство окружающих нас объектов (тел) состоит не из индивидуальных веществ, а из их смесей. Смеси могут быть газообразными, жидкими, твёрдыми. Примерами смесей являются воздух, молоко, лимонад, морская и речная вода, сплавы металлов, плазма крови. Смесь всегда состоит из двух или более индивидуальных соединений.

Смеси бывают однородными и неоднородными.

Однородные (гомогенные) смеси

смеси, в которых образующие их частицы нельзя обнаружить ни визуально, ни с помощью оптических приборов.

Примерами однородных смесей являются раствор сахара или поваренной соли в воде, чистый воздух.

Неоднородные (гетерогенные) смеси

смеси, в которых образующие их частицы можно обнаружить визуально или с помощью оптических приборов

Гранит и молоко — примеры неоднородных смесей. В граните невооружённым глазом можно различить его составные части — зёрна полевого шпата, кристаллы кварца и тёмные блестящие чешуйки слюды. Несмотря на то что молоко кажется однородным, при рассматривании под микроскопом в нём можно увидеть плавающие в воде капельки жира.

Рис. 1. Гранит и молоко под микроскопом


Сравнительная характеристика однородных и неоднородных смесей

Смеси
ОднородныеНеоднородные
Частицы нельзя обнаружить ни визуально, ни с помощью оптических приборовЧастицы можно обнаружить либо визуально, либо с помощью оптических приборов
Примеры смесей
Растворы поваренной соли в воде, сахара в воде, спирта в воде; бензин, сплавы (латунь, бронза и др.), чистый воздух, природный газСмесь глины с водой, молоко, плазма крови, туман, дым, глина, влажная почва, косметические средства (мази, тушь, помада и др.), газированные напитки

Чистые вещества всегда однородны и, в отличие от большинства смесей, имеют постоянный состав и постоянные температуры кипения и плавления. Это позволяет отличить чистое вещество от его смеси с другими веществами. Если наблюдать за температурой в процессе нагревания какого-либо чистого вещества, например льда, то можно заметить, что термометр будет фиксировать температуру  до тех пор, пока весь лёд не растает. А парафин только кажется однородным, а на самом деле представляет собой смесь углеводородов. В отличие от чистого вещества, парафин не имеет строго определённой температуры плавления и плавится в некотором интервале температур: сначала он размягчается, а затем постепенно переходит в жидкое состояние. При этом температура парафина будет постепенно повышаться.

Чистые жидкости кипят при строго определённой температуре. Например, если нагревать воду, то её температура сначала постепенно повышается. При температуре  вода начинает кипеть, при этом в течение всего процесса кипения показания термометра изменяться не будут. Иная картина наблюдается при нагревании нефти: её температура постепенно повышается, но, в отличие от воды, не останавливается на фиксированном значении. Это связано с тем, что нефть представляет собой смесь многих веществ. Индивидуальные вещества в составе смесей сохраняют свои свойства. Для изучения свойств чистого вещества его необходимо очистить от примесей, то есть разделить смесь веществ.


Сравнительная характеристика чистого вещества и смеси

Признаки сравненияЧистое веществоСмесь
СоставПостоянныйНепостоянный
Физические свойстваПостоянныеНепостоянные

Коротко о главном

Свойства отдельных компонентов в смеси сохраняются.

Для чистых веществ характерно постоянство состава и свойств.

Различают однородные (гомогенные) и неоднородные (гетерогенные) смеси.

Смеси содержат отдельные компоненты в любых отношениях и не обладают постоянными свойствами.

Вопросы для самоконтроля

  1. Как вы считаете, можно ли изучать свойства воды, используя для этой цели водопроводную воду? Аргументируйте свой ответ.
  2. Как вы считает, существуют ли в природе абсолютно чистые вещества?
  3. Приведите примеры газообразных, жидких и твёрдых смесей.
  4. Существует ли универсальный способ, с помощью которого чистое вещество можно отличить от смеси?
  5. Предложите и обоснуйте способы, с помощью которых сплав меди с цинком (латунь) можно отличить от чистой меди.

Чем отличаются чистые вещества и смеси?

Любое чистое вещество обладает индивидуальным химическим составом, который находит отражение в химической формуле. Чистому веществу соответствует определённый ряд физико-химических характеристик, строго индивидуальных для конкретного вещества. Именно по этим характеристикам (температуре кипения или плавления, электропроводности, показателю преломления и др.) можно идентифицировать чистое вещество.

Смесь же состоит из нескольких чистых веществ, и свойства смеси могут меняться в зависимости от её количественного состава.

Например, обратите внимание, что вкус воды из-под крана разный в разных городах. Кроме того, в одном городе шампунь и мыло смываются быстро и легко, а в другом городе может возникать ощущение, что мыло смываться не хочет. Это обусловлено разной жёсткостью воды, которая вызвана содержанием в ней различных солей кальция, магния и других металлов. Следовательно, вода из-под крана содержит не только индивидуальное вещество (дистиллированную воду), но и другие вещества (хлорид кальция, карбонат кальция, хлорид магния и т. д.). 

Чистые вещества (индивидуальные) можно также встретить в быту, например алюминиевая ложка, железный гвоздь, медная проволока. В то же время золотое или серебряное украшение не является чистым веществом — украшения всегда производятся из сплава металлов. 

ГРУППА 501 БИОЛОГИЯ 23,24

ТЕМА 23,24:Основные закономерности явлений. наследственности.Моногибридное скрещивание. Первый и второй законы Менделя. Генотип и фенотип. Дигибридное скрещивание. Третий закон Менделя. 

Перечень вопросов, рассматриваемых в теме;

Этот урок раскрывает основные закономерности наследования признаков от родителей к потомству. От брака кареглазой женщины и кареглазого мужчины родилась голубоглазая девочка. Возможно ли это? На этот и многие другие вопросы отвечает наука генетика..

4.  Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Ген, аллель, хромосомы, гомозиготный, гетерозиготный, доминантный признак, рецессивный признак, моногибридное скрещивание, гибрид.

Аллельные гены- гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха)

Альтернативные признаки - взаимоисключающие, контрастные признаки (окраска семян гороха желтая и зеленая).

Анализирующее скрещивание- скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого. Применяется в селекции растений и животных.

Гамета - (от греч. "гаметес" - супруг) - половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в "чистом" виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.

Генетика (от греч. "генезис" - происхождение) - наука о закономерностях наследственности и изменчивости организмов.

Ген (от греч. "генос"-рождение) -участок молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка.

Генотип  совокупность генов одного организма.

Гетерозигота (от греч. "гетерос" - другой и зигота) - зигота, имеющая два разных аллеля по данному гену (Аа, Вb).Гетерозиготная особь в потомстве дает расщепление по данному признаку.

Гомологичные хромосомы (от греч. "гомос" - одинаковый) - парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный:одна хромосома из пары материнского происхождения, другая - отцовского.

Гомозигота (от греч. "гомос" - одинаковый и зигота) зигота, имеющая одинаковые аллели данного гена (оба доминантные АА или оба рецессивные аа). Гомозиготная особь в потомстве не дает расщепления.

Доминантный признак (от лат. "едоминас" - господствующий) - преобладающий признак, проявляющийся в потомстве у
гетерозиготных особей.

Моногибридное скрещивание-скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

Признак рецессивный  (от лат. "рецессус" - отступление) признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.

Фенотип - совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой обитания.

5.   Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

Учебник «Биология.10-11класс», созданный под редакцией академика Д.К.Беляева и профессора Г.М.Дымшица / авт.-сост. Г.М. Дымшиц и О.В.Саблина.- М.: Просвещение, 2018г., стр.96-102

Дополнительные источники:

1.А.А.Кириленко «ЕГЭ. Биология. Раздел «Генетика» , Учебно - методическое пособие.- Ростов н/Д: Легион, 2009г. С 125-179

2.А.Скворцов, А.Никишов, В. Рохлов. Универсальное учебное пособие. Биология, 6-11 классы
Школьный курс. М. «АСТ - Пресс», 2000 г. стр. 394-395

3.О.Л.Ващенко "Биология. Интерактивные дидактические материалы. 6-11 классы (+CDpc)

6. Открытые электронные ресурсы по теме урока (при наличии);

Интернет-ресурсы:

  • Образовательный портал для подготовки к экзаменам https://bio-ege.sdamgia.ru/?redir=1
  • Российский общеобразовательный Портал www.school.edu.ru

7. Теоретический материал для самостоятельного изучения;

Моногибридное скрещивание – это скрещивание, для которого характерным является отличие родительских форм друг от друга по имеющейся одной паре альтернативных, контрастных признаков. Признаком называют любую особенность организма, любое его свойство либо качество, по которому возможно различить особи.

У растений таким свойством является, например, форма венчика (асимметричный или симметричный), его окраска (белый или пурпурный) и т. д. К признакам относят также скорость созревания (позднеспелость либо скороспелость), а также стойкость либо восприимчивость к тем или иным заболеваниям. Все свойства в совокупности, начиная с внешних и заканчивая определенными особенностями в функционировании или структуре клеток, органов, тканей, называются фенотипом. Данное понятие может быть использовано и по отношению к одному из имеющихся альтернативных признаков. Проявление свойств и признаков осуществляется под контролем существующих наследственных факторов – другими словами, генов. В совокупности гены формируют генотип.

Моногибридное скрещивание по Менделю представлено скрещиванием гороха. При этом имеют место такие достаточно хорошо заметные альтернативные свойства, как белые и пурпурные цветки, зеленая и желтая окраска незрелых бобов, морщинистая и гладкая поверхность семян и прочие. Проводя моногибридное скрещивание, Г. Мендель, австрийский ботаник Х I Х в., выяснил, что в первом поколении (F1) все гибридные растения обладали цветками пурпурного оттенка, белая же окраска не проявилась. Так был выведен первый закон Менделя о единообразии образцов первого поколения. Кроме того, ученый установил, что в первом поколении все образцы являлись однородными и по всем семи исследуемым им признакам. Таким образом, моногибридное скрещивание предполагает для особей первого поколения наличие альтернативных признаков только одного родителя, в то время как свойства другого родителя как бы исчезают. Преобладание свойств Г. Мендель назвал доминированием, а сами признаки – доминантными. Не проявляющиеся качества ученый назвал рецессивными.

Проводя моногибридное скрещивание, Г. Мендель подверг самоопылению выращенные гибриды первого поколения. Сформировавшиеся в них семена ученый высеял снова. В итоге он получил следующее, второе поколение (F2) гибридов. В полученных образцах отмечалось расщепление по альтернативным признакам в примерном соотношении 3:1. Другими словами, три четверти особей второго поколения имели доминантные свойства, а одна четверть – рецессивные. В результате этих опытов Г. Мендель сделал вывод, что рецессивный признак в образцах был подавлен, но не исчез, проявившись во втором поколении. Данное обобщение получило название «Закон расщепления» (второй закон Менделя).

Дальнейшее моногибридное скрещивание ученый проводил с целью выявить, как будет происходить наследование в третьем, четвертом и следующих поколениях. Он выращивал образцы, используя самоопыление. В результате опытов было выявлено, что растения, признаки которых являются рецессивными (белые цветки, к примеру), в последующих поколениях осуществляют воспроизведение потомства только с этими (рецессивными) свойствами. Несколько по-другому повели себя растения второго поколения, свойства которых были названы Г. Менделем доминантными (обладатели, например, пурпурных цветков). Среди этих образцов ученый, анализируя потомство, выявил две группы, имеющие абсолютные внешние различия по каждому определенному признаку. Для особей, отличающихся по двум признакам, применяется дигибридное скрещивание. Задачи по определению генотипов и фенотипов сравнительно просты, при их решении применяются законы Менделя.

  1. Генетика - это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы
  2. Опыты Г. Менделя показали, что есть наследственные задатки (гены), которые организм передает из поколения в поколения. Гены определяют признак.
  3. Закон единообразия гибридов первого поколения, которое утверждает, что в первом поколении гибридов проявляется только доминантный признак
  4. Закон расщепления, который гласит, что в потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения (F2) имеет рецессивный признак, три четверти — доминантный. Для объяснения полученного расщепления Мендель предложил гипотезу чистоты гамет, согласно которой при образовании гибридов наследственные факторы (аллельные гены) не смешиваются, а сохраняются в неизменном виде, т. е. гибрид имеет оба фактора — доминантный и рецессивный. Гибрид дает разные виды «чистых» гамет, несущих только один наследственный фактор из пары. Случайное слияние разных видов гамет приводит к появлению разных комбинаций наследственных факторов у гибридов F2 и расщеплению признаков у них.
  5. Открытые Г. Менделем законы универсальны, они приемлемы для животных, растений и для человека.
  6. Законы Г.Менделя являются научной основой для селекции. Закономерности наследования имеют большое значение в области генетики человека, поскольку многие наследственные заболевания наследуются по законам Г. Менделя.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Найдите и выделите цветом по вертикали и горизонтали в филворде

  1. Половые клетки
  2. Организм полученный вследствие скрещивания генетически различающихся форм.
  3. Скрещивание особей с альтернативными признаками;
  4. Участок ДНК
  5. Наука о закономерностях наследственности и изменчивости
  6. Скрещивание позволяющее определить генотип организма
  7. Преобладание признака
  8. Признак, который не проявляет себя, если в генотипе есть доминантный аллель того же признака. –
  9. Различные формы одного и того же гена

Тип вариантов ответов: (Текстовые,Графические, Комбинированные):

Правильный вариант:

Гаметы, гибрид, гибридизация, ген, генетика, анализирующее, доминанта, рецессивный, аллель.


Задание 2.

Вставьте пропущенные слова.

Дано: гетерозиготный темноволосый отец и мать блондинка.

Следовательно, доминирует ген ….,а рецессивен ген ….

Дано: в потомстве кота Васьки и пяти черных кошек были черные и серые котята, причем серых было в три раза больше.

Следовательно, доминирует ген .., рецессивен ген …, а кот Васька …по данному признаку

Тип вариантов ответов: (Текстовые,Графические, Комбинированные):

Правильный вариант:

Дано: гетерозиготный темноволосый отец и мать блондинка.

Следовательно, доминирует ген тёмных волос,а рецессивен ген светлых волос.

Дано: в потомстве кота Васьки и пяти черных кошек были черные и серые котята, причем серых было в три раза больше.

Следовательно, доминирует ген серого цвета, рецессивный ген чёрного, а кот Васька гетерозиготный по данному признаку

Дигибридное скрещивание. Третий закон Менделя.

Законы Менделя кратко и понятно

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.


В 19 веке австрийский ботаник и биолог Грегор Иоганн Мендель проводил исследования посевного гороха. Он смог установить, как передаются признаки по наследству. Это исследование выявило три закономерности, которые получили название «Законы Менделя».

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.

 

 






 

Содержание:

  1. Закон единообразия

  2. Закон расщепления

  3. Закон независимого наследования признаков

  4. Заключение

ЗАКОН ЕДИНООБРАЗИЯ

Порядок проведения эксперимента

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результат

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

ЗАКОН РАСЩЕПЛЕНИЯ

Порядок проведения эксперимента

Для следующего этапа исследования использовался только горох первого поколения. Мендель высадил его и оставил без вмешательства, чтобы горох мог самостоятельно опылиться. Это позволило появиться растениям второго поколения «F2».

Результат


Из-за самостоятельного опыления появились семена желтого и зелёного цвета. А поскольку жёлтый цвет является доминантным признаком, то соотношение семян желтого цвета к зеленому составило 3 к 1.

Разделение, а точнее расщепление родительского типа на два различных, дало название второму закону.

Данный опыт помог установить, что признак одного из родителей (зеленый цвет) не исчез полностью, а просто неактивен или подавлен. За него отвечал тот же ген, что и за желтый цвет, за который отвечала часть гена – доминантный аллель. Желтый цвет в себе содержала рецессивная аллель – «а», подавляемая доминантной «А».

Поэтому строение растений:

  • зеленый горох-родитель – две рецессивных аллели «аа»;

  • желтый горох-родитель – две доминантных аллели «АА»;

  • желтый горох первого поколения – одна доминантная и одна рецессивная аллели «Аа»;

  • желтый горох второго поколения – он может содержать следующие аллели: «АА», «Аа», «аА». В них цвет обуславливается наличием доминанта;

  • зеленый горох второго поколения – две рецессивных аллели «аа».

ТРЕТИЙ ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ

Порядок проведения эксперимента

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

  • желтый цвет и гладкие семена;

  • желтый цвет и ребристые семена;

  • зеленый цвет и гладкие семена;

  • зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

Таким образом строение растений:

  • зеленый горох-родитель с ребристыми семенами – «аа» и «bb»;

  • желтый горох-родитель с гладкими семенами – «АА» и «BB»;

  • желтый горох первого поколения с гладкими семенами – «Аа» и «Bb»;

  • желтый горох второго поколения с гладкими семенами – «АА», «Аа», «аА» в сочетании с «BB», «Bb», «bB».

  • желтый горох второго поколения с ребристыми семенами – «АА», «Аа», «аА» и «bb»

  • зеленый горох второго поколения с гладкими семенами – «аа» в сочетании с «BB», «Bb», «bB»;

  • зеленый горох второго поколения с ребристыми семенами «аа» и «bb».

Таким образом соотношение цветов и гладкости: 9-3-3-1.

ЗАКЛЮЧЕНИЕ

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Материал взят с сайта https://nauka.club

ЗАПИШИТЕ КРАТКО ЗАКОНЫ:
Первый закон Менделя (закон единообразия
)
: В первом поколении все гибриды одинаковы, похожи на одного из родителей.
Второй закон Менделя (закон расщепления): При скрещивание гетерозиготных гибридов первого поколения происходит расщепление признаков в соотношении 3:1.
Третий закон Менделя (закон независимого наследования признаков):  При дигибридном скрещивании расщепление по каждой паре признаков идет независимо от других признаков.
Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре изучаемых  признаков, за которые отвечают аллели одного гена.

Дигибридное скрещивание — скрещивание организмов, различающихся по двум парам альтернативных признаков, например, окраске цветков (белая, смешанная или окрашенная) и форме семян (гладкая или морщинистая).

Вспомним основные традиционные обозначения, применяемые в генетике.

Знаком «зеркало Венеры» обозначают женский пол. Знаком «копьё Марса» – мужской.

Крестик обозначает скрещивание. Буквой P (от латинского parentibus) – родительские формы. Гибридное потомство – буквой F (от латинского filios). Цифра с буквой указывает на порядковый номер поколения гибридов. Например, F1 – гибриды первого поколения.
Буквой G обозначают гаметы. Записываются они в кружках.