понедельник, 21 декабря 2020 г.

 ПОНЕДЕЛЬНИК 21.12.20 г. 305,303, 308,301,108

ГРУППА 305

ТЕМА: Ковалентная химическая связь. Механизм образования ковалентной связи (обменный и донорно-акцепторный). Электроотрицательность. Ковалентные полярная и неполярная связи.

 Учение о химической связи составляет основу всей теоретической химии.

Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Различные типы связей могут содержаться в одних и тех же веществах.

1. В основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруп- пой — ионная.

2. В солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка — ковалентная полярная, а между металлом и кислотным остатком — ионная.

3. В солях аммония, метиламмония и т. д. между атомами азота и водорода — ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком — ионная.

4. В пероксидах металлов (например, Na2O2) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом — ионная и т. д.

- ЗАПОМНИ. Ковалентная связь образуется по обменному механизму, когда атомы образуют общие электронные пары. Ковалентная связь образуется по донорно-акцепторному механизму, когда донор имеет электронную пару, а акцептору принадлежит свободная орбиталь, которую эта пара может занять.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа — электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.


Способы образования ковалентной связи


Ковалентная химическая связь — это связь, возникающая между атомами за счет образования общих электронных пар.

Механизм образования такой связи может быть обменный и донорно-акцепторный.

1. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) Н2 — водород.


Связь возникает благодаря образованию общей электронной пары s-электронами атомов водорода (перекрыванию s-орбиталей).


2) HCl — хлороводород.

Связь возникает за счет образования общей электронной пары из s- и р-электронов (перекрывания s-р-орбиталей).

image27

3) Cl2: в молекуле хлора ковалентная связь образуется за счет непарных р-электронов (перекрывание р-р-орбиталей).

4) N2: в молекуле азота между атомами образуются три общие электронные пары.

2. Донорно-акцепторный механизм образования ковалентной связи рассмотрим на примере иона аммония NH4+.

Донор имеет электронную пару, акцептор — свободную орбиталь □, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна — по донорно-акцепторному механизму.

Ковалентные связи классифицируют по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а)H· + ·H  H:HH-HH2(одна общая пара электронов; H одновалентен);
б)NNN2(три общие пары электронов; N трехвалентен);
в)H-FHF(одна общая пара электронов; H и F одновалентны);
г)        NH4+(четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную. Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

ГРУППА 303 БИОЛОГИЯ

ТЕМА:Деление клетки. Митоз.


Митоз (непрямое деление) является самым распространенным способом деления клеток. Он обеспечивает равномерную передачу наследственной информации материнской клетки двум дочерним. Именно благодаря этому виду клеточного деления образуются практически все клетки многоклеточного организма.

Кроме того, благодаря митотическому делению происходит моноцитогенное бесполое размножение организмов (а у высших растений и половые клетки, гаметы, образуются в результате митоза!).

0. Интерфаза
Период нормальной жизнедеятельности клетки, когда происходит реализация наследственной информации, рост и развитие клетки, а в S-период интерфазы - репликация ДНК.

1. Профаза
Ранняя профаза. В клетке (плазматическая мембрана на фотографии имеет красный цвет) исчезает ядерная оболочка, нити микротрубочек (зеленые) начинают формировать митотический аппарат (веретено деления), хроматин (комплекс ДНК и белков-гистонов, на фотографии - голубые пятна) начинает конденсироваться и, спирализуясь, превращаться в хромосомы.
Поздняя профаза. Продолжается формирование хромосом из хроматина, на полюсах бывшего ядра формируются центры митотического аппарата, между которыми протягиваются микротрубочки нитей веретена деления.

2. Метафаза
Хромосомы располагаются по экватору бывшего ядра, прикрепляясь своими центромерами (первичными перетяжками) к нитям митотического аппарата. Начинается формирование метафазной пластинки.
Заканчивается формирование метафазной пластинки. Именно на этой стадии, блокировав дальнейшее расхождение хромосом при помощи алкалоидов (например, колхицина), изучают кариотип (набор хромосом, присущий данному организму или виду).
3
. Анафаза
Хромосомы разрываются в месте соединения (по центромере) и хроматиды начинают движение к противоположным полюсам клетки: от каждой хромосомы одна хроматида движется к одному полюсу, другая - к другому. Хроматиды теперь можно назвать сестринскими хромосомами, т.к. они теперь действительно "обретают самостоятельность", становятся самостоятельными хромосомами, которые попадут в разные клетки. Заканчивается расхождение хроматид к полюсам клетки. Именно на этом этапе клеточного цикла происходит равномерное распределение наследственной информации материнской клетки между дочерними клетками.
4. Телофаза
Хромосомы концентрируются на противоположных полюсах клетки. начинается десприализация хромосом, постепенно начинает формироваться ядерная оболочка.
Цитокинез
Происходит деление цитоплазмы клеток (цитокинез), завершающее процесс митотического деления клетки.

ГРУППА 308

ТЕМА:

Ароматические углеводороды. Строение бензольного кольца, номенклатура, изомерия, физические свойства аренов

Ароматические углеводороды (Арены) – это органические соединения, в молекулах которых имеется одно или несколько бензольных колец. Бензольное кольцо, или ядро, – циклическая группа атомов углерода с особым характером связей.

Общая формула - CnH2n-6 

1. Представители: 

МОНОЯДЕРНЫЕ

1.     С6H6 – бензол, родоначальник гомологического ряда аренов


2.     С6H5 – CH3 – толуол (метилбензол)


3.     С6H5 – CHH2 – стирол (винилбензол)

4.     Ксилол (орто-, пара- , мета-ксилол)

МНОГОЯДЕРНЫЕ (КОНДЕНСИРОВАННЫЕ)

1.     Нафталин


2.     Антрацен

 

2. Строение ароматических углеводородов:

 

SP2 –гибридизация:

1.     Плоское тригональное строение

2.     Угол – HCH - 120°

3.     Связи σ, π

4.     В бензоле нет простых и двойных связей, под влиянием единой π – электронной системы расстояние между центрами атомов углерода становится одинаковым – 0,139 нм, все связи полуторные           

 

Первую структурную формулу бензола предложил в 1865 г. немецкий химик Ф.А.Кекуле:

 

Атомы С в молекуле бензола образуют правильный плоский шестиугольник, хотя часто его рисуют вытянутым.

Приведенная формула правильно отражает равноценность шести атомов С, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, он не проявляет склонности к реакциям присоединения: не обесцвечивает бромную воду и раствор перманганата калия, т.е. ему не свойственны типичные для непредельных соединений качественные реакции.

В структурной формуле Кекуле – три одинарные и три двойные чередующиеся углерод-углеродные связи. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны. Это объясняется электронным строением его молекулы.

Каждый атом С в молекуле бензола находится в состоянии sp2-гибридизации. Он связан с двумя соседними атомами С и атомом Н тремя σ -связями. В результате образуется плоский шестиугольник, где все шесть атомов С и все σ -связи С–С и С–Н лежат в одной плоскости (угол между связями С–С равен 120o).

 

Рис. Схема образования -связей в молекуле бензола.

 

Третья p-орбиталь атома углерода не участвует в гибридизации. Она имеет форму гантели и ориентирована перпендикулярно плоскости бензольного кольца. Такие p-орбитали соседних атомов С перекрываются над и под плоскостью кольца.

 

Рис. Негибридные 2p-орбитали углерода в молекуле бензола

  

В результате шесть p-электронов (всех шести атомов С) образуют общее π -электронное облако и единую химическую связь для всех атомов С.

 

Рис. Молекула бензола. Расположение π -электронного облака

 

π -Электронное облако обусловливает сокращение расстояния между атомами С.

В молекуле бензола они одинаковы и равны 0,139 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет чередования простых и двойных связей, а существует особая связь – “полуторная” – промежуточная между простой и двойной, так называемая ароматическая связь. Чтобы показать равномерное распределение p-электронного облака в молекуле бензола, корректнее изображать ее в виде правильного шестиугольника с окружностью внутри (окружность символизирует равноценность связей между атомами С):

 

3. Изомерия, номенклатура

 

Изомерия обусловлена изомерией углеродного скелета имеющихся радикалов и их взаимным положением в бензольном кольце. Положение двух заместителей указывают с помощью приставок: орто- (о-), если они находятся у соседних углеродных атомов (положение 1, 2-), мета- (м-) для разделенных одним атомом углерода (1, 3-) и пара- (п-) для находящихся напротив друг друга (1, 4-).

Например, для диметилбензола (ксилола):


орто-ксилол (1,2-диметилбензол)


мета-ксилол (1,3-диметилбензол)

пара-ксилол (1,4-диметилбензол)


Радикалы ароматических углеводородов называют арильными радикалами. Радикал С6Н5 — называется фенил.

ГРУППА 301

ТЕМА:Соли и их свойства.  Взаимодействие солей с металлами. Взаимодействие солей друг с другом. Соли как электролиты. Соли средние, кислые и оснóвные.Химические  свойства солей в свете теории электролитической диссоциации.

Соли - сложные вещества, состоящие из атомов металлов (иногда входит водород или гидроксильная группа) и кислотных остатков.


Классификация солей


СРЕДНИЕ

КИСЛЫЕ

ОСНОВНЫЕ

ДВОЙНЫЕ

СМЕША

ННЫЕ

КОМПЛЕК

СНЫЕ

Na2SO4

NaHSO4

Mg(OH)Cl

K2NaPO4

Ca-OCl

Cl

Na[Al(OH)4]

Чаще всего мы будем работать со средними солями:

Названия солей

для средней соли - 

название кислотного остатка + название металла + указываем валентность для металла с переменной валентностью 

Na2SO4- сульфат натрия,

CuSO4- сульфат меди (II) 

для кислой соли –  

«гидро» или «дигидро» + название кислотного остатка + название металла + указываем валентность для металла с переменной валентностью

NaHSO– гидросульфат натрия;

NaH2PO– дигидроортофосфат натрия

для основной соли –

«гидроксо» + название кислотного остатка + название металла + указываем валентность для металла с переменной валентностью

Mg(OH)Cl - гидроксохлорид магния

ПОЛУЧЕНИЕ

1. Из металлов: 

металл + неметалл = соль

Fe + S = FeS

металл (металлы до Н2) + кислота (р-р) = соль + Н2­

Zn +2 HCl = ZnCl2 + H2

Металл1 + соль1 = металл2 + соль2

ВИДЕО "ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С СОЛЯМИ"

Примечание: (металл2 стоит в ряду активности правее)

Fe + CuCl2 = FeCl2 + Cu 

2.Из оксидов:

кислотный оксид + щелочь = соль + вода

SO3 + 2 NaOH = Na2SO4 + H2O

основный оксид + кислота = соль + вода

CuO + H2SO4 = CuSO4 + H2O  

основный оксид + кислотный оксид = соль

Na2O + CO2 = Na2CO3 

3. Реакция нейтрализации: 

кислота + основание = соль + вода

HCl + NaOH = NaCl + H2O 

4. Из солей:  

соль1 + соль2 = соль3 + соль4

NaCl + AgNO3 = NaNO3 +AgCl 

соль1 + щелочь = нерастворимое основание + соль 2

CuSO4 + 2NaOH = Cu(OH)2 ↓+ Na2SO4

соль1 + кислота1 = кислота2 + соль2

2NaCl + H2SO4 = 2HCl­ + Na2SO4 

Примечание: Все реакции обмена протекают до конца, если одно из образующихся веществ нерастворимо в воде (осадок), газ или вода.


Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH+4) и анионы кислотных остатков.

Например, диссоциация средних солей :

(NH4)2SO-> 2NH+4+ SO2-4;

Na3PO -> 3 Na + PO 3- 4

Кислые же и основные соли диссоци­ируют ступенчато:


Диссоциация кислых солей

Диссоциация основных солей

У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода.

KHSO-> K + HSO -4

HSO -↔ H + SO 2-4

У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.

Mg( OH )Cl -> Mg( OH )++ Cl -

Mg ( OH )+↔ Mg2+ + OH

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Дайте названия следующим солям:
NaCl
KNO3
FeCl3
Li2SO4
KHSO4
BaOHCl
CaSO3
Al2S3
NaH2PO4
CuCl2

№2. Составьте химические формулы солей по их названиям: хлорид железа (II), гидросульфид калия, сульфид калия, сульфит калия, сульфат калия, ортофосфат железа (III), нитрат магния, карбонат натрия.

№3. Как  двумя способами из оксида кальция можно получить:

а) сульфат кальция; б) ортофосфат кальция.

Составьте уравнения реакций.

ГРУППА 108

ТЕМА: Окислительные  свойства азотной  и  серной кислот.

Серная кислота.

Окислительные свойства серной кислоты зависят от ее концентрации и типа металла, с которым она взаимодействует. Разбавленная серная кислота окисляет металлы, стоящие в ряду активности до водорода, за счет ионов Н+.

        Zn + H2SO4(p) = ZnSO4 + H2

 У концентрированной серной кислоты окислителем является элемент образующий кислотный остаток -  SO42- , за счет атома серы в максимальной степени окисления. Окислительные свойства SO42- значительно выше, чем иона водорода Н+, поэтому концентрированная серная кислота взаимодействует практически со всеми металлами, расположенными в ряду напряжений как до водорода, так и после водорода, кроме золото и платины, также с многими неметаллами. Так как окислителем в концентрированной серной кислоте является ион кислотного остатка, за счет атома серы в степени окисления +6, а не ион водорода то при взаимодействии с концентрированной серной кислоты с металлами водород не выделяется.  Металл под действием концентрированной серной кислоты окисляется  до характерной  степени окисления и образует соль, а продукт восстановления кислоты зависит от активности металла и степени разбавления  кислоты.

Взаимодействие металлов  с концентрированной серной кислотой.

В зависимости  от активности металла, и от условий протекания реакций могут выделяться SO2, S, H2S:

     При обычных условиях:

Взаимодействие активных металлов с конц. серной кислотой (Li – Zn)

8Na + 5H2SO4(k)  = 4Na2SO4 + H2S + 4H2O (соль, H2S, H2O).

Взаимодействие металлов средней активности с конц. серной кислотой (Cd – Pb).

3Ni + 4H2SO4(k) = 3NiSO4 + S + 4H2O (соль, S, H2O)

Взаимодействие пассивных металлов с конц. серной кислотой (Me,  стоящие в ряду напряжений металлов после  H2, Fe)

Cu + H2SO4(k)  = CuSO4 + SO2 + H2O (соль, SO2, H2O).

       На схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот. Так при взаимодействии серной кислоты с цинком или с магнием в зависимости от концентрации кислоты одновременно могут образоваться различные продукты восстановления серной кислоты – SO2, S, H2S.

      Zn + 2H2SO4 (70%) = ZnSO4 + SO2 + H2O

      3Zn + 4H2SO4 (40%) = 3ZnSO4 + S + 4H2O

      4Zn + 5H2SO4 (25%) = 4ZnSO4 + H2S + 4H2O

Взаимодействие с неметаллами.

Окислительно-восстановительные процессы происходят и в случае нагревания некоторых неметаллов с концентрированной серной кислотой:

         C + 2H2SO4(k) = CO2 + 2SO2 + 2H2O

         S + H2SO4(k) = 3SO2 + 2H2O

Азотная кислота.

Самое интересное свойство: взаимодействие с металлами.

 Водород при взаимодействии с металлами никогда не выделяется

 Схема реакции азотной кислоты (и разбавленной, и концентрированной) с металлами:

HNO3 + Ме → нитрат + H2O + продукт восстановленного азота

 Два нюанса:

 1. Алюминийжелезо и хром с концентрированной азотной кислотой в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2. С платиной и золотом концентрированная азотная кислота не реагирует вообще.

Чтобы понять до чего вообще может восстанавливаться азот, посмотрим на диаграмму его степеней окисления:

 

hello_html_3e17895e.jpg

 

Азот +5 – окислитель, будет восстанавливаться, то есть понижать степень окисления.

Все возможные продукты восстановления азотной на диаграмме обведены красным.

Определить какой именно продукт будет образовываться можно чисто логически:

до таких низких степеней окисления как -3 или +1, с образованием продуктовNH4NO3 или N2O соответственно, азот восстанавливают только достаточно сильные, активные металлы: щелочные — 1-я группа главная подгруппа, щелочноземельные, а так же Al и Zn. Как ранее уже было сказано, разбавленная кислота восстанавливается глубже, поэтому при взаимодействии активных металлов с конц. азотной кислотой образуется N2O, а при взаимодействии с разб. азотной кислотой NH4NO3.

4Ba + 10HNO3(конц.) → 4Ba(NO3)2 + 5H2O + N2O↑

 

4Ba + 10HNO3(разб.) → 4Ba(NO3)2 + 3H2O + NH4NO3

 

8Li + 10HNO3(конц.) → 8LiNO3 + 5H2O + N2O↑

 

8Li + 10HNO3(разб.) → 8LiNO3 + 3H2O + NH4NO3

 

8Al + 30HNO3(конц.) (t)→ 8Al(NO3)3 + 15H2O + 3N2O↑

 

8Al + 30HNO3(разб.) → 8Al(NO3)3 + 9H2O + 3NH4NO3

 Остальные металлы восстанавливают азотную кислоту до +2 или +4, с образованием продуктов соответственно: NO или NO2.

Разбавленная кислота восстанавливается глубже

при взаимодействии с ней металлов, не отличающихся особой активностью, будет образовываться NO. Ну а с конц. азотной NO2:

 Cu + 4HNO3(конц.) → Cu(NO3)2 + 2H2O + 2NO2

 

3Cu + 8HNO3(разб.) → 3Cu(NO3)2 + 4H2O + 2NO↑

 Fe + 6HNO3(конц.) (t)→ Fe(NO3)3 + 3H2O + 3NO2

 

Fe + 4HNO3(разб.) → Fe(NO3)3 + 2H2O + NO↑

 

(обратите внимание, что железо окисляется до высшей степени окисления)

 

Ag + 2HNO3(конц.) → AgNO3 + H2O + NO2

 

3Ag + 4HNO3(разб.) → 3AgNO3 + 2H2O + NO↑

 hello_html_83378d5.jpg