пятница, 1 апреля 2022 г.

 СУББОТА 02.04.22 г. 403,405,401,206,305.

ГРУППА 403 БИОЛОГИЯ 66,67 

ТЕМА:Лабораторная  работа


«Составление  схем передачи веществ и энергии (цепей  питания), трофических сетей,


построение пирамид биомассы»


Цель: (сформулируйте самостоятельно)


Ход работы.


1.Назовите организмы, которые должны быть на пропущенном месте следующих  пищевых   цепей.


Запишите эти цепи.


2. Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

Пример пищевой сети


3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой   цепи  (задание 1). Биомасса растений составляет 40 тонн.


Вывод: (при составлении вывода работы опишите, что отражают правила экологических пирамид).


Эко­ло­ги­че­ские пи­ра­ми­ды — это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.



 

Различают три типа экологических пирамид: энергии, биомассы и численности.

 

О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах».

Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Принцип построения экологических пирамид

Основание пирамиды образуют продуценты (растения).

Над ними располагаются консументы первого порядка (травоядные).

Следующий уровень представляют консументы второго порядка (хищники).

И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи.



Пирамида биомасс (1) показывает соотношение биомасс организмов разных трофических уровней, изображённых графически таким образом, что длина или площадь прямоугольника, соответствующего определённому трофическому уровню, пропорциональна его биомассе.

В любой трофической цепи не вся пища используется на рост особи, т. е. на формирование биомассы (часть её расходуется на удовлетворение энергетических затрат организмов: дыхание, движение, размножение, поддержание температуры тела и т. д.). Следовательно, в каждом последующем звене пищевой цепи происходит уменьшение биомассы.

Правило экологической пирамиды биомасс отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Пирамида численности, или чисел (2) — отображение числа особей на каждом из трофических уровней данной экосистемы.

Пирамиды чисел отражают только плотность населения организмов на каждом трофическом уровне, но не скорость самовозобновления (оборота) организмов.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения.

По этой причине пирамиды численности могут быть перевёрнутыми, т. е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне.

Например, на одном дереве может жить и кормиться множество насекомых (перевёрнутая пирамида численности).


Перевёрнутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.


 

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы.

Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т. е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

 

Обрати внимание!

Из трёх типов экологических пирамид пирамида энергии даёт наиболее полное представление о функциональной организованности сообществ, так как отражает картину скоростей прохождения массы пищи через пищевую цепь.

 


ТЕМА:Экосистема: устройство и динамика.

Экосистема (от греч. oikos — «жилище» и systema — «объединение») — это любое сообщество живых организмов вместе с физической средой их обитания, объединённые обменом веществ и энергии в единый комплекс.
Рассмотрение экосистемы важно в тех случаях, когда речь идёт о потоках вещества и энергии, циркулирующих между живыми и неживыми компонентами природы, о динамике элементов, поддерживающих существование жизни, об эволюции сообществ. Ни отдельный организм, ни популяцию, ни сообщество в целом нельзя изучать в отрыве от окружающей среды. Экосистема, по сути, это то, что мы называем природой.
Пример:
экосистема озера, в состав которой входят все живые организмы, а также среда их обитания, которая включает воду, особенности дна и грунта, соприкасающийся с водой воздух, солнечное излучение и т. д.
Экосистема и биогеоценоз — близкие понятия, но если термин «экосистема» подходит для обозначения систем любого ранга, то  «биогеоценоз» — понятие территориальное, относимое к таким участкам суши, которые заняты растительными сообществами — фитоценозами.
 
Обрати внимание!
Не любая экосистема является биогеоценозом, но любой биогеоценоз — экосистема.
Экосистема — понятие очень широкое и применимое как к естественным (например, тундра, океан), так и к искусственным комплексам (например, аквариум).
Масштабы экосистем могут быть различны.
  • Микроэкосистема.
Пример:почка дерева, лужа, разрушающийся пень с его обитателями.
  • Мезоэкосистема = биогеоценоз.
Пример:ельник, дубрава, березняк, луг.
  • Макроэкосистема — биом, или природная зона.
Пример:пустыня, тундра, океан.
Все экосистемы нашей планеты взаимосвязаны и составляют единую большую экосистему — биосферу. Она охватывает часть атмосферы, часть литосферы и всю гидросферу. Целостное учение о биосфере создал выдающийся отечественный ученый В. И. Вернадский.


ГРУППА 405 ХИМИЯ 32,33 

ТЕМА:Практическая работа №1

Приготовление раствора заданной концентрации.

Практическая работа №1.

ТЕМА:Приготовление раствора заданной концентрации.


Цель: - научиться практически готовить растворы с заданной

массовой долей растворённого вещества.

Задачи: - повторить и использовать правила ТБ

                 -повторить и практически применить знания о растворах

и массовой доле растворённого вещества,

                 - познакомиться с устройством лабораторных весов и

правилами

                 взвешивания,

                 -формировать коммуникативные компетентности.

Оборудование и реактивы:

Весы лабораторные, химические стаканы (V = 50мл),

стеклянные палочки, мензурки (V =50мл), дистиллированная вода, поваренная соль.




Ход работы.



Приготовление растворов солей с определённой массовой

долей растворённого вещества.

Теоретическая часть (закрепление знаний формул для расчетов массовой доли вещества, умение решения задач разных типов)

1.Приготовить 20 г.водного раствора соли массовой долей соли 5%.


2.Какую массу щелочи необходимо взять для приготовления 50 г 16%-ного раствора?

3. К 600 г 50% р-ра соли добавили 100 г воды. Чему равна массовая доля соли в полученном растворе?

Ход работы (Практическая часть)


Практическую часть начнём с проверки знаний правил ТБ, которые важно помнить при выполнении работы.

1) Нельзя пробовать вещества на вкус.

2) Нельзя брать вещества руками.

3) Если взяли реактива больше, чем требуется, нельзя высыпать ( выливать) обратно в банку (склянку).

4) Нюхать вещества с осторожностью.

5) Работать аккуратно и внимательно , соблюдая порядок и дисциплину.

6) По окончанию работы привести в порядок рабочее место и вымыть руки с мылом.

Приготовление раствора с определенной массовой долей растворенного вещества.  Приготовить раствор хлорида натрия массой 300 г, в котором массовая доля соли равна 12%. Проведем расчеты по определению массы соли и объема воды для приготовления раствора:

m(NaCl) = 300 · 0,12 = 36 (г);

m(H2O) = 300 - 36 = 264 (г), что соответствует объему 264 мл воды.

В колбу или стакан на 500-700 мл поместим предварительно взвешенную навеску соли массой 36 г и небольшими порциями при перемешивании стеклянной палочкой (осторожно!) или круговыми движениями сосуда добавляем предварительно отмеренную цилиндром воду объемом 264 мл. После полного растворения соли перельем раствор в сосуд с пробкой. На этикетке указываем дату приготовления раствора. 

        Вывод

                 - Что такое массовая доля растворённого вещества?

                 - Что говорит о растворе его массовая доля?

ТЕМА: Контрольная работа №2 

КОНТРОЛЬНАЯ РАБОТА "ХИМИЧЕСКАЯ СВЯЗЬ. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ"
ВЫПОЛНИТЕ ТЕСТЫ


ГРУППА 305 ХИМИЯ 6

ТЕМА:Решение экспериментальных задач.

ГРУППА 206 БИОЛОГИЯ 70,71

ТЕМА:ТЕМА:Круговорот химических элементов. Биогеохимические процессы в биосфере.

Потоки переноса вещества и энергии (в том числе и с непосредственным участием живых организмов) могут связывать не только соседние биогеоценозы, но и охватывать всю поверхность Земли.

Поэтому можно говорить о единой, сложной и взаимосвязанной экосистеме высшего ранга — биосфере.

Биосфера — это сложная, грандиозная экологогеографическая система, включающая в себя многочисленные системы низших рангов: биогеоценозы, популяции, организмы. Все они определенным образом взаимодействуют друг с другом и обеспечивают, с одной стороны, определенную устойчивость биосферы, а с другой — ее развитие, эволюцию. Во многом и то и другое определяется биологическим разнообразием, т. е. тем многообразием форм жизни и биологических систем, какое мы можем реально наблюдать ныне и реконструируем для прошлых эпох.

Современное представление о биосфере как уникальной саморегулируемой, самовоспроизводимой и самоорганизующейся системе восходит к работам французского философа и палеонтолога Пьера Тейяра де Шардена и русского ученого Владимира Ивановича Вернадского начала XX в. Английский исследователь Джеймс Лавлок, развивая их взгляды, образно описывает биосферу как своеобразный сверхорганизм — Гею.

Биосфера в современном ее понимании — это оболочка Земли, охваченная деятельностью живого, в том числе и те части планеты, которые непосредственно зависят или зависели от нее в прошлом.

Верхняя граница биосферы соответствует озоновому слою стратосферы, т. е. располагается на высоте около 22-25 км. Нижняя проходит в основном по нижним горизонтам отложений осадочных пород, т. е. на глубине 5-7 км (рис. 36).

Та часть биосферы, где сейчас живые существа встречаются постоянно называют эубиосферой. Ее мощность существенно меньше — 5—6 км над поверхностью Земли и менее километра под ее поверхностью (если не принимать во внимание данные последних десятилетий XX в.

В каждой точке земной поверхности складываются уникальные условия, нигде больше точно не повторяющиеся. Именно поэтому разнообразие сообществ почти неисчерпаемо. Однако в биосфере можно выделить основные их типы — биомы, существование которых во многом определяется общими физико-географическими условиями. Большинство биомов имеют свои народные названия — тайга, степь, пустыня и т. д.

Биомы различаются не только по видовому составу организмов, но и по биомассе, продукции, по скорости сукцессионных процессов (см. таблицу).

Можно выделить несколько основных групп биомов.

Лесные биомы существуют в условиях хорошего увлажнения и достаточной теплообеспеченности. Для них характерно господство деревьев и связанных с ними животных. Их биомасса много больше годовой продукции. Темпы сукцессий можно оценить как средние.

При недостаточном увлажнении, но сравнительно хорошей обеспеченности теплом формируются травянистые биомы — степи, прерии, саванны и т.п. Здесь господствуют травы, а деревья и кустарники относительно редки или отсутствуют вовсе. Обильны травоядные животные — копытные, грызуны,

Циркуляция химических элементов (веществ) в биосфере называется биогеохимическими циклами.
Обмен химических элементов между живыми организмами и неорганической средой называют биогеохимическим круговоротом, или биогеохимическим циклом.
Живые организмы играют в этих процессах решающую роль.
Необходимые для жизни элементы условно называют биогенными (дающими жизнь) элементами, или питательными веществами. Различают две группы питательных веществ:
  • к макротрофным веществам относятся элементы, которые составляют химическую основу тканей живых организмов. Это углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.
  • К микротрофным относят элементы, содержание которых в живых организмах незначительное. Их часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Недостаток микроэлементов может оказывать сильное влияние на живые организмы (в частности, ограничивать рост растений), так же как и нехватка биогенных элементов.
 
Биогенные элементы благодаря участию в круговороте могут использоваться неоднократно. Запасы биогенных элементов непостоянны: некоторая их часть связана и входит в состав живой биомассы, что снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы в конечном счёте не разлагались, запас питательных веществ исчерпался бы, и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофных организмов, в первую очередь редуцентов, — решающий фактор поддержания круговорота биогенных элементов и сохранения жизни.
Биогеохимический цикл углерода
Рассмотрим биогеохимический цикл углерода. Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислый газ, входящий в состав атмосферы или находящийся в растворённом состоянии в воде. Основные звенья круговорота углерода показаны на рисунке.
 
Krugovorot-ugleroda.png

В процессе фотосинтеза углекислый газ превращается растениями в органическое вещество, служащее пищей животным.
Дыхание, брожение и сгорание топлива возвращают углекислый газ в атмосферу.
Запасы углерода в атмосфере оцениваются в 700 млрд т, а в гидросфере — в 50 000 млрд т. Согласно расчётам, за год в результате фотосинтеза прирост растительной массы на суше и в воде равен соответственно 50 и 180 млрд т.
Биогеохимический цикл азота
Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические. Схема циркуляции азота в биосфере представлена на рисунке.

 
krugovoroty-v-biosfere.png
Биогеохимический цикл фосфора
Одним из наиболее простых циклов является цикл фосфора. Основные запасы фосфора содержат различные горные породы, которые постепенно (в результате разрушения и эрозии) отдают свои фосфаты наземным экосистемам. Фосфаты потребляют растения и используют их для синтеза органических веществ. При разложении трупов животных микроорганизмами фосфаты возвращаются в почву и затем снова используются растениями. Помимо этого часть фосфатов выносится с током воды в море. Это обеспечивает развитие фитопланктона и всех пищевых цепей с участием фосфора. Часть фосфора, содержащаяся в морской воде, может вновь вернуться на сушу в виде гуано — экскрементов морских птиц. Там, где они образуют большие колонии, гуано добывают как очень ценное удобрение.
 


Некоторые организмы могут играть исключительно важную роль в круговороте фосфора. Моллюски, например, фильтруя воду и извлекая оттуда мелкие организмы, их остатки, захватывают и удерживают большое количество фосфора. Несмотря на то что роль моллюсков в пищевых цепях прибрежных морских сообществ невелика (они не образуют плотных скоплений с высокой биомассой, их пищевая ценность невысока), эти организмы имеют первостепенное значение как фактор, позволяющий сохранить плодородие той зоны моря, где они обитают. Популяции моллюсков подобны природным аккумуляторам, только вместо электроэнергии они накапливают и удерживают фосфор, необходимый для поддержания жизни в прибрежных зонах морей. Иначе говоря, популяция этих организмов более важна для экосистемы как «посредник» в обмене веществом между живой и неживой природой (сообществом и биотопом).
Этот пример — хорошая иллюстрация того, что ценность вида в природе не всегда зависит от таких показателей, как его обилие или сырьевые качества. Эта ценность может проявляться лишь косвенно и не всегда обнаруживается при поверхностном исследовании.

ТЕМАОхрана видов и популяций.Охрана экосистем.

Охрана видов и экосистем

Охрана видов и целых екосистем необходима по многим причинам. Во-первых, биоразнообразие живых организмов, которое является следствием их длительной эволюции, составляет одно из главных условий устойчивости биосферы во времени. Обедненность екосистем вследствие сокращения численности особей или уменьшения количества видов нарушает их устойчивость и вызывает снижение биохимической активности. На рис. 1 приведены главные направления оптимизации природоохранных комплексов в Германии.

Во-вторых, естественные биоценозы следует охранять, поскольку из них мы черпаем материалы для улучшения сортов растений и пород сельскохозяйственных животных, производства химических препаратов для борбы с вредителями и, что очень важно, для производства лекарственных веществ. Биотехнология (отрасль прикладной науки, использующая свойства живых организмов (биосинтез, воспроизводство генетического материала) для производства нужных человеку процессов) переживает свой расцвет, а свойства многих живых организмов планеты еще не исследованы.

Природоохранные мероприятия не ограничиваются защитой отдельных видов, под защиту берутся целые экосистемы, которые включают в состав заповедников, национальных парков, заказников, резерватов.

Заповедник - высшая категория природоохранных территорий, где законом охраняется в нетронутом состоянии весь естественный комплекс и ведутся научные исследования.

Национальные парки - достаточно большие территории, где охрана природы объединяется с рекреацией (отдыхом и оздоровлением людей). Первый в мире национальный парк - Йеллоустоунский - был создан в 1872 г. решением конгресса США.

Территория национальных парков состоит из одной или нескольких экологических систем или естественных ландшафтов высокой эстетической ценности, мало или совсем не измененных человеческой деятельностью, где охраняются растения, животные и ландшафты. Главная задача национальных парков - создание и поддержание естественных экологических, геоморфологических и эстетических ценностей данной территории. Рекреационные мероприятия подчинены этой главной цели.


 Природоохранные направления: 

Заказники - территории, на которые допускается хозяйственное использование лишь части естественных объектов и в той мере, в которой это не наносит вреда объекту охраны. Статус заказников определяется их целевым назначением: ботанические, охотничьи, гидрологические.

Резерват - природоохранная территория или памятник природы с заповедным или заказным режимом. Как правило, это небольшие урочища (леса, озера, участка долин и побережий) и отдельные объекты (водопады, пещери, уникальные геологические объекты и т.п.).

Систематизированные данные о животных и растениях, будущее которых находится под угрозой, заносят в Красную книгу. Международный союз охраны природы и естественных ресурсов (МСОП), созданный в 1948 г., работает над созданием Красной книги МСОП. Виды, включенные в нее, делятся на пять категорий:

  1. Исчезающие виды - находятся под серьезной угрозой исчезновения; их спасение невозможное без специальных мероприятий охран воспроизведения (эти виды записаны на красных страницах).

  2. Редкие виды - находятся под прямой угрозой вымирания, сохраняются в небольших количествах или на ограниченной территории; есть опасность их исчезновения (белые страницы).

  3. Виды, которые находятся под угрозой исчезновения, - их численность быстро падает (желтые страницы).

  4. Неопределенные виды - очевидно, находятся под угрозой исчезновения, но достоверных данных о состоянии их популяции нет (серые страницы).

  5. Виды, которые восстанавливаются (зеленые страницы).

Каждая страна, на территории которой находится вид, занесенный в Красную книгу МСОП, несет моральную ответственность перед человечеством за сохранение этого сокровища природы.



Составить план ответа по просмотренной презентации.


 


 

 

 

 



ГРУППА 401 БИОЛОГИЯ 30 

ТЕМА: Методы селекции.  Успехи селекции.

 

Селекция — это наука о методах создания новых и улучшения существующих пород животных, сортов растений и штаммов микроорганизмов.

Задачи современной селекции:
  • повышение продуктивности организмов;
  • улучшение качества продукции (вкуса, внешнего вида, химического состава);
  • улучшение хозяйственно важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).
Сортпородаштамм — это искусственно созданная устойчивая группа (популяция) живых организмов, имеющая определённые наследственные особенности.
Все особи такой группы имеют сходные морфологические и физиологические признаки, однотипную реакцию на изменение факторов внешней среды, определённый уровень продуктивности.
 
19-06-2018 08-22-28.jpg
 
1. Искусственный отбор используется для сохранения и размножения  особей с желаемой комбинацией признаков. Различают массовый и индивидуальный отбор. 
  
При массовом отборе одновременно отбирают большое число особей с нужным признаком, остальные выбраковывают. Это отбор по фенотипу, он не даёт генетически однородного материала. Повторяется многократно.
  
При индивидуальном отборе (по генотипу) выделяют одну особь с необходимыми признаками и получают от неё потомство.
 
2. В селекционной работе используют следующие методы гибридизации: инбридинг, аутбридинг и отдалённую гибридизацию.
Инбридинг — близкородственное скрещивание.
При инбридинге скрещиваются потомки с родительскими формами или потомки одних и тех же родителей. Этот тип скрещивания применяют для получения чистых линий, т. е. перевода большинства генов в гомозиготное состояние и закрепления ценных признаков. Нежелательным последствием близкородственного скрещивания является инбредная депрессия — снижение продуктивности и жизнеспособности потомства из-за проявления рецессивных мутаций.
Аутбридинг — неродственное (межпородное или межсортовое) скрещивание.
При неродственном скрещивании может наблюдаться эффект гетерозиса (гибридной силы) — повышение жизнеспособности и продуктивности гибридов по сравнению с родительскими формами. Гетерозис проявляется у гибридов первого поколения и обусловлен переходом большинства генов в гетерозиготное состояние. При этом нежелательные рецессивные мутации становятся скрытыми. При половом размножении в следующих поколениях степень гетерозиготности уменьшается и эффект гибридной силы исчезает. Он может сохраняться только при вегетативном размножении.
Отдалённая гибридизация — скрещивание организмов, относящихся к разным видам и родам.
Осуществляется с трудом, а полученные гибриды бесплодны из-за затруднения конъюгации хромосом разных видов в профазе  I мейоза. Разработаны методы преодоления бесплодия.
  
3. Искусственный (индуцированныймутагенез используют для увеличения разнообразия исходного материала. Мутагенез вызывают действием мутагенных факторов, например, рентгеновского облучения. Мутации носят ненаправленный характер, поэтому селекционер  отбирает организмы с новыми полезными свойствами.
  
Геномной мутацией является полиплоидия, т. е. кратное увеличение числа хромосомных наборов. Используется в селекции растений. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные формы культурных растений (пшеницы, картофеля, овощных культур) имеют более высокую урожайность, чем родственные диплоидные виды.
  
Искусственно полиплоидию вызывают обработкой растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.
Работы Н. И. Вавилова
Для успешной селекционной работы в первую очередь необходим разнообразный исходный материал.
 
Поиск исходного материала облегчает закон гомологических рядов наследственной изменчивости, открытый Н. И. Вавиловым.
Родственные роды и виды живых организмов характеризуются сходными рядами наследственной изменчивости.
Если известны формы изменчивости одного вида, то можно предположить, что подобные формы будут существовать и у других близкородственных видов.
            
Н. И. Вавилов установил также семь центров происхождения культурных растений и основал мировую коллекцию семян культурных растений и их диких сородичей.
 
 Название центра
Примеры культурных растений
 Южноазиатский тропический Рис, сахарный тростник, цитрусовые, огурец, баклажан
 Восточноазиатский Соя, просо, гречиха, слива, вишня, яблоня
 Юго-Западноазиатский Пшеница, лён, рожь, горох, репа, чечевица, чеснок, виноград, морковь
 Средиземноморский Капуста, свекла, петрушка, маслины, лук
 Абиссинский Твёрдая пшеница, ячмень, кофейное дерево, банан, арбуз
 Центральноамериканский Кукуруза, какао, перец, фасоль, хлопчатник, тыква
 Южноамериканский Картофель, табак, ананас
 
 
19-06-2018 07-52-53.jpg

ОДОМАШНИВАНИЕ КАК НАЧАЛЬНЫЙ ЭТАП СЕЛЕКЦИИ

 

Одомашнивание как начальный этап селекции

1. Селекция как вид научной деятельности возникла:

а) во второй половине XX в. благодаря использованию искусственного мутагенеза в селекции;
б) в первой половине XX в. благодаря открытию Н.И. Вавиловым центров происхождения культурных растений;
в) в середине XIX в., благодаря созданию эволюционной теории Ч.Дарвином;
г) в конце XIX в., благодаря работам И.В. Мичурина.

(Ответ: в.)

2. Причиной окультуривания растений и одомашнивания животных является:

а) переход человека от охоты на диких животных и сбора дикорастущих растений к разведению животных и выращиванию растений в искусственно созданных условиях;
б) возрастание потребностей человека в пище и одежде;
в) постоянное улучшение человеком свойств культивируемых растений и животных;
г) зависимость благополучия человека от ограниченного набора видов растений и животных.

(Ответ: г.)

3. Одомашнивание является начальным этапом:

а) селекции растений, животных;
б) селекции растений;
в) гибридизации;
г) селекции животных.

(Ответ: а.)

4. Центрами происхождения культурных растений Н.И. Вавилов считал регионы мира, где:

а) имеются наиболее благоприятные условия;
б) найдено большое количество ископаемых остатков растений;
в) наблюдается наибольшее число сортов и разновидностей какого-либо растения;
г) отсутствуют конкурирующие виды.

(Ответ: в.)

5. Центрами происхождения культурных растений:

а) хлопчатник, арбуз, кофе;
б) капуста, брюква, люпин, оливковое дерево;
в) пшеница, рожь, овес, чечевица;

являются:

1. Переднеазиатский;
2. Средиземноморский.
3. Африканский.

(Ответ:1–в, 2–б, 3–а.)

6. Центрами одомашнивания животных:

а) индейка, лама, тур;
б) свинья, собака, куры;
в) овца, коза.

считаются центры:

1. Индонезийско-Индокитайский;
2. Южно-Среднеамериканский;
3. Передне-Малоазиатский.

(Ответ: 1–б, 2–а, 3–в.)

7. По выражению Н.И. Вавилова, селекция «представляет собой эволюцию, направляемую волей человека». Это означает, что селекция:

а) осуществляется человеком;
б) представляет длительный процесс;
в) приводит к образованию новых пород животных и сортов растений;
г) приводит к образованию новых пород животных и сортов растений, удовлетворяющих потребностям человека.

(Ответ: г.)

9. Установлено, что домашние животные:

1) лошадь;
2) корова;
3) овца;

произошли от предков:

а) тарпана;
б) тура;
в) лошади Пржевальского;
г) муфлона.

(Ответ: 1–а, 2–б, 3–г.)


ТЕМА:Успехи селекции.

 Увеличение производства сельскохозяйственной продукции как в мире, так и в нашей стране базируется на использовании потенциала сортов растений и пород животных, полученных в процессе селекции. Другими словами, наше благополучие напрямую связано с уровнем развития и эффективностью селекции, что и определяет ее особую значимость для человечества.

Хотя человек и освоил под сельское хозяйство всего 10% суши нашей планеты, но увеличить значительно долю пахотных земель сегодня невозможно, так как все доступные на сегодня резервы пригодных для сельского хозяйства земель фактически исчерпаны. Остается одно — значительно увеличить отдачу используемых земель, резко повысить продуктивность растений и животных.

За последние 100 лет селекция достигла поразительных успехов. Урожайность зерновых повысилась на порядок. Сегодня в развитых странах получают до 100 ц/га пшеницы, риса, кукурузы. По новым сортам картофеля зарегистрирован рекордный урожай почти в 1000 ц/га, т. е. в четыре раза выше среднего по возделываемым сортам.

Подобная картина наблюдается и по другим культурам. Сравнение средних и рекордных урожаев свидетельствует лишь о тех резервах, которые заложены в новых сортах и могут быть реализованы при совершенствовании технологий возделывания растений. Это также свидетельствует о том, что селекция имеет огромные перспективы в деле наращивания продовольственного потенциала.

Мощное развитие животноводства за последние десятилетия привело к появлению выдающихся пород животных. Продуктивность молочного скота у некоторых пород достигла 8—10 тыс. кг молока в год. Новый сибирский тип российской мясошерстной породы овец отличается высокой мясной и шерстной продуктивностью. Средняя масса баранов составляет 110—130 кг, средний настриг шерсти в чистом волокне 6—8 кг. Лучшие породы кур дают по 400 яиц в год на несушку, а бройлерные цыплята достигают массы 2,5—3 кг за семь недель.

Комплекс селекционных приемов, используемых в молочном скотоводстве, называется крупномасштабной селекцией. Она включает сбор всей селекционно-генетической информации, составление оптимальной стратегии селекционной работы, оценку генотипов лучших животных, создание банков замороженной спермы от элитных быков, отбор и эффективное использование лучших коров. Методы гормональных воздействий и трансплантации позволяют получать от лучших коров десятки зигот в год и выращивать их в коровах, имеющих более низкую племенную ценность. Вся система управляется из единого информационного центра. Такая широкомасштабная селекция позволяет повышать продуктивность породы на 1—2% в год. Это очень высокий показатель для таких медленно размножающихся животных, как крупный рогатый скот.

Селекционер, создающий новые сорта растений и породы животных, — это прежде всего ученый, в совершенстве владеющий знаниями генетики, систематики, физиологии и многих других наук. Кроме того, это, образно говоря, художник, создающий вначале абстрактный образ будущего сорта растений или породы животных и только после этого приступающий к его реальному воплощению. Сочетание таких двух качеств в одном человеке является довольно редким явлением, поэтому выдающихся селекционеров, создавших лучшие сорта растений или породы животных, знают повсеместно. Наиболее известные российские селекционеры-растениеводы: А. П. Шехурдин и В. Н. Мамонтова — по яровой пшенице, И. В. Мичурин — по плодовым растениям, П. П. Лукьяненко и В. Н. Ремесло — по озимой пшенице, М. И. Хаджинов и Г. С. Галеев — по кукурузе, В. С. Пустовойт — по подсолнечнику, М. Ф. Иванов, Н. С. Батурин, В. А. Струнников внесли крупный вклад в создание новых пород животных.