среда, 27 января 2021 г.

 27/01/21г. 308,305,303

 ГРУППА 308(БИОЛОГИЯ) и 

ГРУППА 305(БИОЛОГИЯ)

ТЕМА: Генетическая информация.Удвоение ДНК. Образование и-РНК по матрице ДНК. Генетический код.

1. ДНК — матрица для синтеза белков. Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют од­ну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру, с книго­печатанием. Учебник, который вы держите в руках, издан ти­ражом п экземпляров. Все п книг отпечатаны с одного шаб­лона — типографской матрицы, поэтому они совершенно оди­наковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и обо всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Уча­сток молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирована еще в 20-х годах выдающимся отечественным биологом Н. К. Кольцовым.

2. Удвоение ДНК. Молекулы ДНК обладают поразительным свойством, не присущим ни одной другой из известных молекул, — способностью к удвоению. Что представляет собой процесс удвоения? Вы помните, что двойная спираль ДНК построена по принципу комплементарности. Этот же принцип лежит в основе удвоения молекул ДНК. С помощью специальных ферментов водородные связи, скрепляющие нити ДНК, разрываются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей последовательно пристраиваются комплементарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными — они задают по­рядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов происходит соединение нуклеотидов друг с другом. При этом образуются новые нити ДНК, комплементарные каждой из ра­зошедшихся цепей. Таким образом, в результате удвоения создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, синтезированную вновь.

Дочерние молекулы ДНК ничем не отличаются друг от друга и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же информацию, которая содержалась в материнской клетке. Так как гены — это участки молекул ДНК, то две дочерние клетки, образующиеся при делении, имеют одинаковые гены.

Каждая клетка многоклеточного организма возникает из одной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов. Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют одинаково «испорченный» гемоглобин. Дети, больные анемией, по­лучают «испорченный» ген от родителей через их половые клет­ки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. Ген является единицей генетической, или наследственной, информации.

Трудно, глядя на типографскую матрицу, судить о том, хорошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хороший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

Ход образования и-РНК. К рибосомам, местам синтеза бел­ков, из ядра поступает несущий информацию посредник, способный пройти через поры ядерной оболочки. Таким посредником является информационная РНК (и-РНК). Это одноцепочечная молекула, комплементарная одной нити молекулы ДНК. Специальный фермент — полимераза, двигаясь по ДНК, подбирает по принципу комплементарности нуклеотиды и соединяет их в единую цепочку (рис. 21). Процесс образования и-РНК называется транскрип­цией (от лат. «транскрипцио» — переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь и-РНК аденин, если стоит гуанин — включает цитозин, если аденин — то урацил (в состав РНК не входит тимин).

По длине каждая из молекул и-РНК в сотни раз короче ДНК. Ин­формационная РНК — копия не всей молекулы ДНК, а только части ее, одного гена или группы рядом лежащих генов, несущих ин­формацию о структуре белков, не­обходимых для выполнения од­ной функции. У прокариот такая группа генов называется опероном. В начале каждой группы генов находится своего рода посадочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, полимераза способна начать синтез и-РНК. В конце группы генов фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец переписывания. Готовая и-РНК отходит от ДНК, покидает ядро и направляется к месту синтеза белков — рибосоме, расположенной в цитоплазме клетки.

В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:

ДНК—и-РНК—белок.

3. Генетический код — определенные сочетания нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК.\

Ген — участок молекулы ДНК, несущий информацию о структуре одной молекулы белка.

Свойства генетического кода:

— триплетность — одна аминокислота кодируется тремя рядом расположенными нуклеотидами — триплетом, или кодоном;

— универсальность — код един для всего живущего на Земле (у мха, сосны, амебы, человека, страуса и пр. одни и те же триплеты кодируют одни и те же аминокислоты);

— вырожденность — одной аминокислоте может соответствовать несколько триплетов (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним трип­летом (метионин кодируется триплетом АУГ);

— специфичность — каждый триплет кодирует только одну аминокислоту.

Триплеты ГАА или ГАГ, занимающие шестое место в гене здоровых людей, несут информацию о цепи гемо­глобина, кодируя глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид заменен на У, а триплеты ГУА и ГУГ кодируют валин;

— неперекрываемость — кодоны одного гена не мо­гут одновременно входить в соседний;

— непрерывность — в пределах одного гена считывание генетической информации происходит в од­ном направлении.

4. Трансляция – механизм, с помощью которого последовательность триплетов оснований иРНК переводится в специфическую последовательность аминокислот в полипептидной цепи.

Подготовительным этапом трансляции является рекогниция – активирование и присоединение аминокислоты к тРНК (фермент аминоацил-тРНК-синтетаза (кодаза)).

Затем иРНК соединяется с рибосомой (у прокариот начинается синтез с кодона АУГ, с которым взаимодействует антикодон особой тРНК (с формилметионином)), затем первая тРНК доставляет сюда первую аминокислоту (для каждой аминокислоты есть своя тРНК) и связывается с определенным участком иРНК по принципу комплементарности (антикодон тРНК соответствует кодону иРНК).

Происходит связывание с иРНК и с рибосомой второй тРНК, несущей вторую аминокислоту. Первая и вторая аминокислоты соединяются пептидной связью (фермент пептидил-трансфераза). Затем рибосома перемещается на один триплет вперед, первая тРНК освобождается, приходит третья тРНК. Рибосома перемещается по молекуле иРНК прерывисто, триплет за триплетом, делая каждый из них доступным для контакта с тРНК. Сущность трансляции в подборе по принципу комплементарности антикодона тРНК к кодону иРНК. Если антикодон тРНК соответствует кодону иРНК, то аминокислота, доставляемая такой тРНК, включается в полипептидную цепь, и рибосома перемещается на следующий триплет (фермент транслоказа).

Как только рибосома дойдет до стоп-кодона иРНК, происходит распад комплекса, полипептид отделяется от матрицы-иРНК и приобретает свою конформацию.

Для трансляции необходимы ферменты (кодаза, пептидил-трансфераза, транслоказа), энергия АТФ, ионы Mg2+.

Таким образом, главными этапами трансляции являются:

1) присоединение иРНК к рибосоме;

2) рекогниция (активация аминокислоты и ее присоединение к тРНК);

3) инициация (начало синтеза) полипептидной цепи;

4) элонгация (удлинение) цепи;

5) терминация (окончание синтеза) цепи;

6) дальнейшее использование иРНК (или ее разрушение).

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Найдите и выделите цветом по вертикали и горизонтали названия химических элементов:

  1. самый распространённый элемент в земной коре и живых организмов;
  2. элемент – основа строения органических соединений, атомы которого способны соединяться друг с

Тип вариантов ответов: Текстовые, Графические, Комбинированные.

Правильный вариант/варианты (или правильные комбинации вариантов):

  1. Кислород
  2. Угл

Подсказка: при необходимости обратитесь к дополнительным материалам

Задание 2.

Текст задания:

Установите соответствие между термином и его определением.

Тип вариантов ответов: (Текстовые, Графические, Комбинированные).

Варианты ответов:

Определение

Термин

Процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК

Транскрипция

Процесс синтеза РНК с использованием ДНК в качестве матрицы

Фотосинтез

Процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов

Репликация

Основоположники клеточной теории

Трансляция

Правильный вариант/варианты (или правильные комбинации вариантов):

процесс

Термин

Процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК

Репликация

Процесс синтеза РНК с использованием ДНК в качестве матрицы

Транскрипция

Процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов

Фотосинтез

Процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой

Трансляция



ГРУППА 303 (БИОЛОГИЯ)

ТЕМА: ЭМБРИОНАЛЬНОЕ И ПОСТЭМБРИОНАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМОВ.

ДИФФЕРЕНЦИРОВКА КЛЕТОК. РАЗВИТИЕ ВЗРОСЛОГО ОРГАНИЗМА.

Онтогенез – индивидуальное развитие организма.

Эмбриональный период, именуемый эмбриогенезом, берёт начало с соединения ядер женской и мужской половых клеток и представляет собой процесс оплодотворения. Так, у тех организмов, которым свойственно внутриутробное развитие, эмбриогенез заканчивается рождением, у организмов с личиночного типа развитием – выходом из зародышевых оболочек.

Эмбриональный период развития имеет несколько стадий:

1.Зигота. При оплодотворении мужская половая клетка, достигая яйцеклетки, провоцирует её развитие. В ней начинают происходить химические и физические процессы, которые способствуют образованию симметрии яйцеклетки, ликвидации мембран ядер, в результате чего, ядра двух клеток соединяются, и образуется ДНК.

2. Дробление (первый этап развития зиготы) – начинается деление зиготы. В яйцеклетке, которая продвигается по фаллопиевой трубе, образуются борозды, благодаря чему происходит деление клеток. Образовавшиеся таким путём клетки называются морулы. Эту стадию проходят все многоклеточные организмы, которые размножаются половым путём, различным является только процесс деления клеток (радиальное, билатеральное, спиральное). Особенностью деления клеток является то, что они не растут. Этот процесс предполагает образование из одной крупной клетки (яйцеклетки) большого количества клеток мелких, с меньшим количеством цитоплазмы возле ядер. Эмбриональный период на этом не заканчивается, рассмотрим следующие стадии развития эмбриона.

3. Бластула (образование многоклеточной структуры в форме пузырька) – состоит из слоя клеток, которые именуются эмбриональными. Размер бластулы приближается к размерам яйцеклетки, поэтому при делении клеток, возрастает число ядер и ДНК.

4. Гаструляция – стадия движения клеток эмбриональных, в результате чего образуются три слоя зародышевых листов. Эта стадия характеризуется возрастанием синтеза белков и рибосом, в этот период происходит выпячивание полюса (вегетативного) внутрь бластулы, противоположные полюса соединяются, и полость бластулы ликвидируется. При этом образуется новая полость, которая получила название бластопор или первичный рот.

Таким образом, гаструляция является необходимым моментом развития эмбриона, поскольку эмбриональный период на этой стадии даёт возможность формированию его органов и тканей, а также систем организма. Следует отметить, формирование тканей и органов эмбриона в разные периоды имеют разную чувствительность к повреждающим воздействиям среды, например, к инфекциям, радиации или химическим агентам. Эти периоды повышенной чувствительности называют критическими, здесь повышается вероятность развития отклонений.

Так, эмбриональный период имеет несколько критических моментов. Рассмотрим их более детально: 1. Период бластулы (первые две недели после зачатия) – эмбрион либо погибает, либо продолжает развиваться без отклонений. В это время погибает большое количество эмбрионов (40%), которые начали своё развитие из мутированных половых клеток. 2. С двадцатого по семидесятый день после оплодотворения – период наибольшей ранимости эмбриона, поскольку начинают закладываться и формироваться все жизненно важные органы. 3. Плодный период характеризуется быстрым ростом плода. Здесь довольно часто могут возникать нарушения его развития только в тех органах, которые не закончили своего формирования. Таким образом, эмбриональный период онтогенеза характеризуется формированием и развитием эмбриона путём делением клеток, образования у него тканей, органов и систем. У различных живых организмов этот период разнится по времени, но в любом случае, начинается он с момента зачатия и заканчивается рождением новой жизни

Эктодерма - наружный слой кожи – эпителий, нервная система, эмаль зубов, производные кожи: волосы, ногти, когти, рога, копыта, чешуя рыб, пресмыкающихся, кожные железы, органы чувств: глаза, уши и др.

Энтодерма - эпителий внутренних органов: кишечника, жабр, легких. Пищеварительные железы – печень, поджелудочная железа.

Мезодерма хрящевая и костная ткань, мышцы, почки, сердечно - сосудистая система, половые железы, дентин зубов.

На развивающийся зародыш оказывает влияние окружающая среда. В большей степени эта зависимость проявляется у беспозвоночных животных. У плацентарных млекопитающих посредником между зародышем и окружающей средой является организм матери, от которого эмбрион получает питание, кислород, тепло.

Основателем современной эмбриологии является российский учёный К.М.Бэр. В 1828 г. он опубликовал сочинение «История развития животных».

Заслуга создания эволюционной эмбриологии также принадлежит замечательным русским ученым А.О. Ковалевскому, И.И. Мечникову, А.Н. Северцову, И.И. Шмальгаузену. Современным представлениям о зародышевых листках, наука обязана А.О. Ковалевскому, который обнаружил эктодерму, энтодерму и мезодерму у всех групп хордовых.

Немецкие ученые Ф. Мюллер и Э. Геккель сформулировали биогенетического закона, согласно которому онтогенез, т.е. индивидуальное развитие вида, есть краткое повторение филогенеза – исторического развития вида которому он относится. В 1866 Геккел вводит понятие онтогенез.

Российский ученый - академик А.Н. Северцов установил, что в индивидуальном развитии животных повторяются признаки не взрослых предков, а их зародышей.

На протяжение всего времени внутриутробного развития плод, напрямую связанный с организмом матери через уникальный орган – плаценту, находится в постоянной зависимости от состояния здоровья матери.

Влияние никотина.

В последнее время ведётся много споров на тему, влияет ли курение на развитие плода. Известно, что никотин, попадающий в кровь матери, легко проникает сквозь плаценту в кровеносную систему плода и вызывает сужение сосудов. Если поступление крови в плод ограничена, то снижается его снабжение кислородом и питательными веществами, что может вызвать задержку развития. У курящих женщин ребёнок при рождении весит в среднем на 300-350г меньше нормы. Существуют и другие проблемы, связанные с курением при беременности. У таких женщин чаще происходят преждевременные роды и выкидыши на поздних сроках беременности. На 30% выше вероятность ранней детской смертности и на 50% - вероятность развитие пороков сердце у детей, чьи матери не смогли во время беременности отказаться от сигарет.

Влияние алкоголя.

Столь же легко через плаценту проходит и алкоголь. Употребление спиртного при беременности может вызвать у ребенка состояние, известное, как алкогольный синдром плода. При этом синдроме наблюдается задержка умственного развития, микроцефалия (недоразвития головного мозга), расстройства поведения (повышенная возбудимость, невозможность сосредоточиться), снижение скорости роста, слабость мышц.

Влияние наркотических веществ.

Особенно чувствителен плод к вредному воздействию наркотических веществ. Если женщина имеет зависимость от наркотических препаратов, то её ребёнок, как правило, в эмбриональный период развитие приобретает такую же зависимость.

После рождения у него возникает синдром отмены (ломка), потому что исчезает постоянное поступление наркотика, который до этого ребёнок получал из крови матери через плаценту. Так как героин, кокаин и другие наркотики в первую очередь поражают нервную систему, у таких детей ещё в период внутриутробного развития может возникнуть поражение головного мозга, что приведёт в дальнейшем к задержке умственного развития или нарушения поведения.

Влияние лекарственных препаратов.

Лекарственные препараты, которые продаются в аптеке без рецептов, всегда тщательно проверяются на влияние вредных воздействий. Однако, если возможно, было бы желательно ограничить приём лекарств, особенно на ранних стадиях беременности и в критические для развития плода периоды, потому что многие лекарственные препараты очень легко проходят через плаценту.

Трагедия, которая потрясла Западную Европу связанна с талидомидом. Препарат в начале 60-х гг. ХХ в. выписывали многим беременным, страдающих от постоянных приступах тошноты. Довольно быстро выяснилось, что это лекарство вызывало нарушения развития конечностей у плода: они либо отсутствовали, либо были недоразвиты. Лекарство было запрещено, но несколько тысяч детей уже родились. Часто у новорожденных, чьи матери принимали талидомид, кисти или стопы росли прямо из туловища. Степень недоразвития конечностей зависела от того, на какой стадии беременности мать принимала лекарство.

Вирусные заболевания

Для развития плода представляют серьёзную опасность вирусные заболевания матери во время беременности. Наиболее опасны краснуха, гепатит В и ВИЧ-инфекции. В случае заражения краснухой на первом месяце беременности у 50% детей развиваются врождённые пороки: слепота, глухота, расстройства нервной системы и пороки сердца.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Установите последовательность стадий эмбриогенеза хордового животного.

Запишите в таблицу, соответствующую последовательность цифр

Тип вариантов ответов: (Текстовые, Графические, Комбинированные).

Варианты ответов

1) дробление зиготы

2) образование нейрулы

3) формирование гаструлы

4) образование бластулы

5) формирование зиготы

Правильные варианты:

5

1

4

3

2

Задание 2.

Найдите три ошибки в приведённом тексте. Подчеркните предложения, в которых сделаны ошибки

Тип вариантов ответов: (Текстовые, Графические, Комбинированные).

Варианты ответов:

1. Эмбриональное развитие – эмбриогенез начинается с момента деления яйцеклетки и заканчивается рождением организма или выходом его из яйца.

2. Первый этап – дробление характеризуется быстрым делением без увеличения массы клеток эмбриона.

3. Дробление заканчивается образованием бластулы с бластоцелью внутри.

4. На стадии гаструлы у хордовых животных образуется гастральная полость, которая в дальнейшем превращается в кишку, формируются энтодерма, мезодерма и эктодерма.

5. На стадии нейрулы образуется нервная пластинка, которая преобразуется в нервную трубку, из которой в дальнейшем у позвоночных развивается головной и спинной мозг.

6. В конце стадии нейрулы в эмбриогенезе хордовых животных образуется осевой комплекс органов: хорда, под которой расположены нервная и кишечная трубки.

Правильный вариант:

1. Эмбриональное развитие – эмбриогенез начинается с момента деления яйцеклетки и заканчивается рождением организма или выходом его из яйца.

2. Первый этап – дробление характеризуется быстрым делением без увеличения массы клеток эмбриона.

3. Дробление заканчивается образованием бластулы с бластоцелью внутри.

4. На стадии гаструлы у хордовых животных образуется гастральная полость, которая в дальнейшем превращается в кишку, формируются энтодерма, мезодерма и эктодерма.

5. На стадии нейрулы образуется нервная пластинка, которая преобразуется в нервную трубку, из которой в дальнейшем у позвоночных развивается головной и спинной мозг.

6. В конце стадии нейрулы в эмбриогенезе хордовых животных образуется осевой комплекс органов: хорда, под которой расположены нервная и кишечная трубки.

1 эмбриогенез начинается с момента оплодотворения и образования зиготы.

4 – мезодерма закладывается на стадии нейрулы.

6 – осевой комплекс органов хордовых – хорда, над которой расположена нервная трубка, под хордой – кишечная трубка с жаберными карманами в глотке