среда, 27 октября 2021 г.

 СРЕДА 27.10.21 г.   403,  408, 206

моя почта :   rimma.lu@gmail.com

ВНИМАНИЕ!!! ОЛИМПИАДА ПО ХИМИИ И БИОЛОГИИ!!! ЗАДАНИЯ
 НА ВКЛАДКЕ НАШЕГО  САЙТА

ГРУППА 403 биология 25,26

ТЕМА: Мейоз. Образование половых клеток и оплодотворение.

Образование половых клеток. Мейоз

Вспомните!

Где в организме человека происходит образование половых клеток?

Какой набор хромосом содержат гаметы? Почему?

Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный (гаплоидный) набор хромосом. При их слиянии (оплодотворении) происходит образование диплоидного набора, в котором каждая хромосома имеет пару – гомологичную хромосому. В каждой паре гомологичных хромосом одна хромосома получена от отца, а вторая – от матери.

У животных процесс образования половых клеток – гаметогенез – протекает в специальных органах – половых железах (гонадах). У большинства животных мужские половые клетки (сперматозоиды) образуются в семенниках, женские гаметы (яйцеклетки) – в яичниках. Развитие яйцеклеток называют овогенезом или оогенезом, а сперматозоидов – сперматогенезом.

Строение половых клеток.

Яйцеклетки – это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1–0,3 мм) и желтка практически не содержат.

 Сперматозоиды – мелкие подвижные клетки, у человека их длина всего около 60 мкм. У разных организмов они отличаются формой и размерами, но, как правило, все сперматозоиды имеют головку, шейку и хвост, обеспечивающий их подвижность. В головке сперматозоида находится ядро, содержащее хромосомы, и акросома – особый пузырёк с ферментами, необходимыми для растворения оболочки яйцеклетки. В шейке сосредоточены митохондрии, которые обеспечивают движущийся сперматозоид энергией (рис. 63).

Рис. 63. Сперматозоид млекопитающего: А – электронная фотография; Б – схема строения

Сперматозоиды впервые были описаны голландским естествоиспытателем А. Левенгуком в 1677 г. Он же и ввёл этот термин – сперматозоид (от греч. sperma – семя и zoon – живое существо), т. е. живое семя. Яйцеклетка млекопитающих была открыта в 1827 г. российским учёным К. М. Бэром.

Образование половых клеток. Развитие половых клеток подразделяют на несколько стадий: размножение, рост, созревание, а в процессе сперматогенеза выделяют ещё и стадию формирования (рис. 64).

Рис. 64. Гаметогенез у человека

Рис. 65. Фазы мейоза

Стадия размножения. На этой стадии клетки, формирующие стенки половых желёз, активно делятся митозом, образуя незрелые половые клетки. Эта стадия у мужчин начинается с наступлением половой зрелости и продолжается почти всю жизнь. У женщин образование первичных половых клеток завершается ещё в эмбриональном периоде, т. е. общее количество яйцеклеток, которые у женщины будут созревать в течение её репродуктивного периода, определяется уже на ранней стадии развития женского организма. На стадии размножения первичные половые клетки, как и все остальные клетки тела, диплоидны.

Стадия роста. На стадии роста, которая гораздо лучше выражена в овогенезе, происходит увеличение цитоплазмы клеток, накопление необходимых веществ и редупликация ДНК (удвоение хромосом).

Стадия созревания. Третья стадия – это мейоз. Мейоз – это особый способ деления клеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное.

Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом. В процессе двух мейотических делений из одной диплоидной клетки образуются четыре гаплоидные.

Мейоз состоит из двух последовательных делений, которым предшествует однократное удвоение ДНК, осуществлённое на стадии роста. В каждом делении мейоза выделяют четыре фазы, характерные и для митоза (профазу, метафазу, анафазу, телофазу), однако они отличаются некоторыми особенностями (рис. 65).

Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты или тетрады, состоящие из двух хромосом (четырёх хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками (кроссинговер), что приведёт к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет (рис. 66).

К концу профазы I ядерная оболочка разрушается.

В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом – число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.

Рис. 66. Перекрёст хромосом и обмен гомологичными участками

В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК.

Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.

В профазе II разрушается ядерная оболочка. В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.

В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуется четыре гаплоидные клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.

При сперматогенезе на стадии созревания в результате мейоза образуется четыре одинаковые клетки – предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.

Мейотические деления в овогенезе характеризуются рядом особенностей. Профаза I завершается ещё в эмбриональном периоде, т. е. к моменту рождения девочки в её организме уже имеется полный набор будущих яйцеклеток. Остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток. В результате первого деления мейоза образуется крупная клетка – предшественник яйцеклетки и маленькое, так называемое полярное, тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается – образуется зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.

Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.

Значение гаметогенеза. В результате гаметогенеза образуются половые клетки, содержащие гаплоидный набор хромосом, что позволяет при оплодотворении восстанавливать число хромосом, характерное для вида. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. Этого не происходит благодаря существованию особого процесса – мейоза, во время которого диплоидное число хромосом (2n) сокращается до гаплоидного (1n). Таким образом, биологическая роль мейоза заключается в поддержании постоянства числа хромосом в ряду поколений вида.

Вопросы для повторения и задания

1. Сравните строение мужских и женских половых клеток. В чём их сходство и отличия?

2. От чего зависит размер яйцеклеток? Объясните, почему яйцеклетки млекопитающих – одни из самых мелких.

3. Какие периоды выделяют в процессе развития половых клеток?

4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

5. Перечислите отличия мейоза от митоза.

6. В чём заключается биологический смысл и значение мейоза?

Подумайте! Выполните!

1. Организм развился из неоплодотворённой яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

2. Объясните, почему для обозначения мужских половых клеток существует два термина: спермии (например, у покрытосеменных растений) и сперматозоиды.


ГРУППА 408 БИОЛОГИЯ, 13

ТЕМА: Лаб.работа №2 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом» 


ГРУППА 206 БИОЛОГИЯ 35,36

ТЕМА:  Тема:  Сцепленное наследование генов. 




Американский генетик Томас Морган изучал закономерности наследования генов, расположенных в одной гомологичной хромосоме.
 


Томас Морган
 
В экспериментах Морган использовал плодовую мушку дрозофилу, обладающую важными для генетиков качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством чётко выраженных альтернативных признаков.
 
16-05-2018 17-42-04.jpg  16-05-2018 17-42-14.jpg
Дрозофила и её хромосомный набор
  
У мухи дрозофилы гены, отвечающие за окраску тела и длину крыльев, располагаются в одной хромосоме.
 
Морган проводил два типа анализирующего скрещивания. При скрещивании рецессивной по обоим признакам самки (чёрной с короткими крыльями) с дигетерозиготным самцом (серым с нормальными крыльями) в потомстве появилось 50 % чёрных мух с короткими крыльями и 50 % мух с серым телом и нормальными крыльями.
 
Значит, гены, расположенные в одной хромосоме, наследовались совместно. Такие гены образуют группу сцепления.
 
Явление совместного наследования генов, расположенных в одной хромосоме, Морган назвал сцепленным наследованием.
 
Другие результаты получились, когда скрещивали дигибридную самку (серую с нормальными крыльями) с гомозиготным рецессивным самцом (чёрным с короткими крыльями). В этом случае потомство имело четыре фенотипа: 41,5 % — серых с короткими крыльями, 41,5 % — чёрных с нормальными крыльями, 8,5 % — серых с нормальными крыльями, 8,5 % — чёрных с короткими крыльями.
 
Морган пришёл к выводу, что сцепление может быть неполным. Оно нарушается в результате кроссинговера — обмена участками между гомологичными хромосомами.
Кроссинговер
В профазе I мейоза происходит конъюгация гомологичных хромосом. Хромосомы сближаются, а затем начинают расходиться и образуют перекрёсты (хиазмы). В процессе конъюгации между некоторыми дочерними хроматидами возможен обмен участками (кроссинговер).
 
17-05-2018 10-52-13.jpg
 
Каждая из образовавшихся хроматид попадает в отдельную гамету. В результате кроссинговера возникают кроссоверные гаметы, хромосомы которых содержат новые комбинации генов.
 
17-05-2018 10-48-19.jpg
 
Организмы, которые возникают в результате слияния кроссоверных гамет, называют рекомбинантными.
 
Так как кроссинговер происходит не после каждой конъюгации, то и число кроссоверных гамет всегда меньше числа некроссоверных гамет.

Морган доказал, что частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами в хромосоме. Чем это расстояние больше, тем чаще происходит кроссинговер и тем чаще появляются рекомбинантные организмы.
 
Частота рекомбинации (кроссинговера= число рекомбинантов  :  общее число потомков × 100 %.
  
Эта величина показывает относительное расстояние между сцепленными генами в хромосоме. За единицу расстояния между генами принимают 1 морганиду (1 % кроссинговера), или процент появления рекомбинантных особей.



ТЕМА: Взаимодействие генотипа и окружающей среды .

Взаимодействие гена и окружающей среды — это процесс, в ходе которого на основе определённого генотипа и воздействия фактора среды проявляется фенотип. В узком смысле, в генетической эпидемиологии: взаимодействие гена и окружающей среды — сочетание двух факторов риска (генетического и средового), приводящее к резкому изменению фенотипа, отличающемуся от привычного. Представляет собой интерес как способ описания нелинейных изменений фенотипа, качественных скачков в переходе от нормального (здорового) фенотипа к патологическому, которые невозможно объяснить простым сложением действия генетического фактора (варианта гена) и действием среды в отсутствии этого фактора.

ПЕРЕЙДИТЕ ПО ССЫЛКЕ, ПАРАГРАФ 32, СТР. 113.ПРОЧИТАЙТЕ И СОСТАВЬТЕ КРАТКИЙ ПЛАН.

https://docviewer.yandex.ua/view/0/?page=116&*=adcPCq1BTLP7wkFu5CNMIELmhtd7InVybCI6InlhLWRpc2stcHVibGljOi8veExRZnpza3dMdVdqOEt4U0Z3TDAva0J2Ymh3UzVVVUg2NlJWeWhJS2M0SE9UTXBQcm5TbC9aV0laOGh2bzFKdXEvSjZicG1SeU9Kb25UM1ZvWG5EYWc9PSIsInRpdGxlIjoi0LHQuNC%2B0LvQvtCz0LjRjyAxMC0xMS5wZGYiLCJub2lmcmFtZSI6ZmFsc2UsInVpZCI6IjAiLCJ0cyI6MTYzNTA5Njc2NzM2MSwieXUiOiI3OTg1ODk5NDUxNTM0NDAxMzEyIn0%3D

Только знания и способность трезво рассуждать помогут понять реалии бытия.
                                                                                                                              Слово...