понедельник, 16 ноября 2020 г.

 ПОНЕДЕЛЬНИК, 16.11.20г. 305,303,308,301,108 группы

ГРУППА 305

Тема урока: Основные законы химии. Стехиометрия. Закон сохранения массы веществ. Закон постоянства состава веществ молекулярной структуры. Закон Авогадро и следствия их него.

Законы стехиометрии



Основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией. Стехиометрия включает в себя законы Авогадро, постоянства состава, кратных отношений, Гей-Люссака, эквивалентов и сохранения массы.

В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы (М. В. Ломоносов, 1748, А. Лавуазье, 1789).

Закон сохранения массы веществ : Масса реагирующих веществ равна массе продуктов реакции.

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст): Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.

Закон кратных отношений (Д. Дальтон): Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

При взаимодействии азота с кислородом образуются пять оксидов. На 1 грамм азота в образующихся молекулах приходится 0,57, 1,14, 1,71, 2,28, 2,85 грамм кислорода, что соответствует отношением 2:1, 1:1, 2:3, 1:2, 2:5 в этих оксидах; их составы N 2O, NO, N 2O 3, NO 2, N 2O 5.

Закон эквивалентов (И. Рихтер): В молекулярных соединениях массы составляющих их элементов относятся между собой как их эквиваленты.

Закон Авогадро : В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.

Из закона Авогадро вытекают два следствия:

  • Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем.
     
  • Относительная плотность одного газа по другому равна отношению их молярных масс.

Число Авогадро – число частиц в моле любого вещества; N A = 6,02∙10 23 моль –1.

Молярный объем – объем моля любого газа при нормальных условиях; равен 22,4 л∙моль –1.

Молярная масса (M) – масса одного моля вещества, численно совпадающая с относительными массами атомов, ионов, молекул, радикалов и других частиц, выраженных в г∙моль –1.

ГРУППА 303

Тема урока: Агрегатные состояния веществ и водородная связь. Твердое, жидкое и газообразное состояния веществ. Переход вещества из одного агрегатного состояния в другое. Водородная связь.



Агрегатное состояние

Агрегатное состояние — состояние какого-либо вещества, имеющее определенные свойства: способность сохранять форму и объем, иметь дальний или ближний порядок и другие. При изменении агрегатного состояния вещества происходит изменение физических свойств, а также плотности, энтропии и свободной энергии.

Почему происходят такие превращения?

Все вокруг состоит из атомов и молекул. Атомы и молекулы различных веществ взаимодействуют друг с другом, и именно связь между ними определяет, какое у вещества агрегатное состояние.

Выделяют четыре типа агрегатных веществ: газообразное, жидкое, твердое, плазма.

Переход из одного агрегатного состояния в другое, а также броуновское движение или диффузия относятся к физическим явлениям, поскольку в этих превращениях не происходит изменений молекул вещества и сохраняется их химический состав.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга. К сожалению, невооруженным глазом и даже с помощью светового микроскопа увидеть молекулы газа невозможно. Однако газ можно потрогать.

Если накачать воздухом шину автомобиля или велосипеда, и из мягкой и сморщенной она становится накачанной и упругой. Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Жидкое состояние

При повышении давления и/или снижении температуры газы можно перевести в жидкое состояние. Еще на заре ХIХ века английскому физику и химику Майклу Фарадею удалось перевести в жидкое состояние хлор и углекислый газ, сжимая их при очень низких температурах. Однако некоторые из газов не поддались ученым в то время, и, как оказалось, дело было не в недостаточном давлении, а в неспособности снизить температуру до необходимого минимума. Жидкость, в отличие от газа, занимает определенный объем, однако она также принимает форму заполняемого сосуда ниже уровня поверхности. Наглядно жидкость можно представить, как круглые бусины или крупу в банке. Молекулы жидкости находятся в тесном взаимодействии друг с другом, однако свободно перемещаются относительно друг друга. Если на поверхности останется капля воды, через какое-то время она исчезнет. Но мы же помним, что благодаря закону сохранения массы-энергии, ничто не пропадает и не исчезает бесследно. Жидкость испарится, т.е. изменит свое агрегатное состояние на газообразное. Испарение — это процесс преобразования агрегатного состояния вещества, при котором молекулы, чья кинетическая энергия превышает потенциальную энергию межмолекулярного взаимодействия, поднимаются с поверхности жидкости или твердого тела. Испарение с поверхности твердых тел называется сублимацией или возгонкой. Наиболее простым способом наблюдать возгонку является использование нафталина для борьбы с молью. Если вы ощущаете запах жидкости или твердого тела, значит происходит испарение. Ведь нос как раз и улавливает ароматные молекулы вещества. Жидкости окружают человека повсеместно. Свойства жидкостей также знакомы всем — это вязкость, текучесть. Когда заходит разговор о форме жидкости, то многие говорят, что жидкость не имеет определенной формы. Но так происходит только на Земле. Благодаря силе земного притяжения капля воды деформируется. Однако многие видели, как космонавты в условиях невесомости ловят водяные шарики разного размера. В условиях отсутствия гравитации жидкость принимает форму шара. А обеспечивает жидкости шарообразную форму сила поверхностного натяжения. Мыльные пузыри – отличный способ познакомиться с силой поверхностного натяжения на Земле. Еще одно свойство жидкости — вязкость. Вязкость зависит от давления, химического состава и температуры. Большинство жидкостей подчиняются закону вязкости Ньютона, открытому в ХIХ веке. Однако есть ряд жидкостей с высокой вязкостью, которые при определенных условиях начинают вести себя как твердые тела и не подчиняются закону вязкости Ньютона. Такие растворы называются неньютоновскими жидкостями. Самый простой пример неньютоновской жидкости — взвесь крахмала в воде. Если воздействовать на неньютоновскую жидкость механическими усилиями, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело.

Твёрдое состояние

Если у жидкости, в отличие от газа, молекулы движутся уже не хаотически, а вокруг определенных центров, то в твёрдом агрегатном состоянии вещества атомы и молекулы имеют четкую структуру и похожи на построенных солдат на параде. И благодаря кристаллической решетке твердые вещества занимают определенный объем и имеют постоянную форму. Между твердыми и жидкими телами существует промежуточная группа аморфных веществ, представители которой с одной стороны за счет высокой вязкости долго сохраняют свою форму, а с другой – частицы в нем строго не упорядочены и находятся в особом конденсированном состоянии. К аморфным веществам относится целый ряд веществ: смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид, полимеры, сургуч, различные клеи, эбонит и пластмассы.

При определенных условиях вещества, находящиеся в агрегатном состоянии жидкости, могут переходить в твердое, а твердые тела, наоборот, при нагревании плавиться и переходить в жидкое. Это происходит потому, что при нагревании увеличивается внутренняя энергия, соответственно молекулы начинают двигаться быстрее, а при достижении температуры плавления кристаллическая решетка начинает разрушаться и изменяется агрегатное состояние вещества. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например – лед, чугун.

В зависимости от вида частиц, образующих кристаллическую решетку твердого тела, выделяют следующую структуру: молекулярную, атомную, ионную металлическую.

Повторите тему «Кристаллические решётки»

У одних веществ изменение агрегатных состояний происходит легко, как, например, у воды, для других веществ нужны особые условия (давление, температура). Но в современной физике ученые выделяют еще одно независимое состояние вещества — плазма.

Плазма — ионизированный газ с одинаковой плотностью как положительных, так и отрицательных зарядов. В живой природе плазма есть на солнце, или при вспышке молнии. Северное сияние и даже привычный нам костер, согревающий своим теплом во время похода на природу, также относится к плазме. Искусственно созданная плазма добавляет яркости любому городу. Огни неоновой рекламы — это всего лишь низкотемпературная плазма в стеклянных трубках. Привычные нам лампы дневного света тоже заполнены плазмой.

Плазму делят на низкотемпературную — со степенью ионизации около 1% и температурой до 100 тысяч градусов, и высокотемпературную — ионизация около 100% и температурой в 100 млн градусов (именно в таком состоянии находится плазма в звездах). Низкотемпературная плазма в привычных нам лампах дневного света широко применяется в быту. Высокотемпературная плазма используется в реакциях термоядерного синтеза и ученые не теряют надежду использовать ее в качестве замены атомной энергии, однако контроль в этих реакциях очень сложен. А неконтролируемая термоядерная реакция зарекомендовала себя как оружие колоссальной мощности, когда 12 августа 1953 года СССР испытал термоядерную бомбу.

Проверьте себя, решите тест:

1. Что не относится к агрегатным состояниям:

A.     жидкость

B.     газ

C.     свет

2. Вязкость ньютоновских жидкостей подчиняется:

A.     закону Бойля-Мариотта

B.     закону Архимеда

C.     закону вязкости Ньютона

3. Почему атмосфера Земли не улетает в открытый космос:

A.     потому что молекулы газа не могут развить вторую космическую скорость

B.     потому что на молекулы газа воздействует сила земного притяжения

C.     оба ответа правильные

4. Что не относится к аморфным веществам:

A.     сургуч

B.     стекло

C.     железо

5. При охлаждении объем увеличивается у:

A.     янтаря

B.     льда

C.     сахара

Ответы:

1

2

3

4

5

C

C

B

C

B

Вопросы для самостоятельной работы:

1. Какой тип кристаллической решетки у следующих широко используемых в быту веществ:

вода, уксусная кислота (CH3COOH), сахар (C12H22O11), калийное удобрение (KCl), речной песок (SiO2, температура плавления 1710 °C), аммиак, поваренная соль? По каким свойствам вещества можно определить тип его кристаллической решетки?

2. Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решетка

1) атомная; 2) молекулярная; 3) ионная; 4) металлическая

3. Ионную кристаллическую решетку в твердом состоянии имеет каждое из двух веществ

1) HBr и HCOONa; 2) SO3 и KNO3; 3) NaOH и Fe; 4) Ba(NO3)2 и Li2O

4. Укажите тип кристаллической решетки веществ, для которых характерны следующие свойства: ковкость, пластичность, электропроводность.

ГРУППА 308(продолжение - 2-й урок , начало  )

Тема урока: Качественное оп­ределение углерода, водорода и хлора в орга­нических веществах.



 Практическая работа № 1

Качественное определение углерода, водорода и хлора в органических веществах.

Цель: научиться осуществлять качественный анализ органических веществ, совершенствовать навыки работ с лабораторным оборудованием.

Оборудование: лабораторный штатив, пробирки, пробка с газоотводной пробкой, спиртовая горелка.

Реактивы: CuO, C23H48 (парафин), CuSO4 безводный, Ca(OH)2CCl4медная проволока.

Ход работы

С правилами техники безопасности ознакомлен(а) и обязуюсь их выполнять.

Смесь парафина и CuO поместили в пробирку. Безводный CuSO4 внесли ближе к отверстию. Закрепили пробирку с содержимым в горизонтальном положении. Пробирку закрыли пробкой с газоотводной трубкой, конец которой опустили во вторую пробирку с Са(ОН)2. Содержимое первой пробирки нагрели.

hello_html_11e34147.png

Парафин окисляется в присутствии оксида меди (II). При этом углерод превращается в углекислый газ, а водород - в воду:

С23Н48+70СuO→23CO2↑+24H2O+70Cu.

Выделяющийся углекислый газ взаимодействует с гидроксидом кальция, что вызывает помутнение известковой воды, вследствие образования нерастворимого карбоната кальция:

CO2+Ca(OH)2→CaCO3↓+H2O.

Безводный сульфат меди (II) приобретает голубую окраску при взаимодействии с водой, в результате чего образуется кристаллогидрат:

CuSO4+5H2O→ CuSO4*5H2O.

По продуктам окисления парафина CO2 и H2O установили, что в его состав входит углерод и водород.

2.

Качественное определение хлора в молекулах галогенпроизводных углеводоровов.

Конец медной проволоки согнули в виде спирали и прокалили в пламени горелки до исчезновения окраски пламени. Затем охладили спираль и нанесли на нее каплю тетрахлорметана и снова внесли в пламя.

hello_html_m6dc0b12b.jpg

Пламя окрашивается в изумрудно-зеленый цвет.

Данная реакция является качественной для определения хлора в органических соединениях. Следовательно, в исходном веществе содержится хлор.



Общий вывод: на данной практической работе мы научились осуществлять качественный анализ органических веществ, а именно, химическим путем определили углерод и водород в предельных углеводородах и хлор в молекулах галогенпроизводных углеводоровов. А также усовершенствовали навыки работ с лабораторным оборудованием.

Задание:

вариант

  1. Относительная плотность паров дихлоралкана по водороду равна 49,5. Установите формулу дихлоралкана.

Решение:
D(H2)=49,5

CnH2nCl2

М (CnH2nCl2)= D(H2) · М (H2) = 49,5 · 2 = 99 г/моль

М (CnH2nCl2) = 12n + 2n + 2 · 35,5= 99 г/моль

14n=28

n=2

C2H4Clискомый дихлоралкан



II вариант

  1. Один из бромалканов содержит 65,04% брома. Установите молекулярную формулу этого вещества.

Решение:

ω(Br)=65,04%

CnH2n+1Br-?

М (CnH2n+1Br) = 12n + 2n + 1 + 80 = 123 г/моль

14n=42

n=3

C3H7Br искомый бромалкан


ГРУППА 301

Тема урока: 

Массовая доля растворенного вещества.



Существуют  различные способы выражения концентрации растворённого вещества в растворе, мы познакомимся с массовой долей растворённого вещества (процентной концентрацией).

I. Массовая доля растворённого вещества wрастворённого вещества - это безразмерная величина, равная отношению массы растворённого вещества mрастворённого вещества  к общей массе раствора mраствора :

mраствора =  mрастворённого вещества mрастворителя

Массовую долю растворённого вещества (процентная концентрация)  обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества – CaCl2 в воде равна 0,06 или 6%. Это означает, что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

ЗАПОМНИТЕ!

Пример решения задачи:
Сколько грамм соли и воды нужно для приготовления 300 г 5% раствора?

Решение:

Дано:

m раствора = 300 г

wрастворённого вещества = 5%

Решение:

1. Запишем формулу для расчёта массовой доли:

2. Преобразуем формулу и вычислим массу растворённого вещества в растворе

m растворённого вещества = (wрастворённого вещества · m раствора) / 100%

m растворённого вещества = (5 % · 300 г) / 100% = 15 г

3. Вычислим массу растворителя – воды:

m раствора =  m растворённого вещества + m (H2O)

m (H2O) =  m раствора - m растворённого вещества = 300 г - 15 г = 285 г

Ответ: Для приготовления 300 г 5% раствора надо взять 15 г  соли и 285 г воды.

 

Найти:

m (H2O) = ?

m растворённого вещества = ?

 «Вычисление массовой доли растворённого вещества»

Задача: Сахар массой 12,5г растворили в 112,5г воды.

Определите массовую долю сахара в полученном растворе.

Дано:

m сахара = 12,5 г

m (H2O) = 112,5 г

Решение:

1. Запишем формулу для расчёта массовой доли:

2. Вычислим массу раствора:

m раствора =  m растворённого вещества + m (H2O)

m раствора = 12,5 г + 112,5 г = 125 г

2. Вычислим массовую долю сахара:

w% = (12,5 г · 100%) / 125 г = 10 % или 0,1

Ответ: w= 10 %

 


ТРЕНАЖЁРЫ

Тренажёр №1 "Массовая доля"

Тренажёр №2 "Массовая и объёмная доля компонентов в смеси"



ГРУППА 108

Тема урока: Общая характеристика металлов.




Общие химические свойства металлов

Сильные восстановители: Me0 – nē →  Men+

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.


I. Реакции металлов с неметаллами

1)     С кислородом:
2Mg + O→  2MgO

2)     С серой:
Hg + S →  HgS

3)     С галогенами:
Ni + Cl2  –→   NiCl2

4)     С азотом:
3Ca + N2  –→   Ca3N2

5)     С фосфором:
3Ca + 2P  –→   Ca3P2

6)     С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H2 →  2LiH

Ca + H2 →  CaH2

II. Реакции металлов с кислотами

1)     Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl →   MgCl2 + H2

2Al+ 6HCl →  2AlCl3 + 3H2

6Na + 2H3PO4 →  2Na3PO4 + 3H2­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!




Zn + 2H2SO4(К) → ZnSO4 + SO2 + 2H2O

4Zn + 5H2SO4(К) → 4ZnSO4 + H2S + 4H2O

3Zn + 4H2SO4(К) → 3ZnSO4 + S + 4H2O

2H2SO4(к) + Сu → Сu SO4 + SO2 + 2H2O

10HNO3 + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

4HNO3) + Сu → Сu (NO3)2 + 2NO2 + 2H2O

III. Взаимодействие металлов с водой

1)     Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H2O →  2NaOH + H2

Ca+ 2H2O →  Ca(OH)2 + H2

2)     Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H2O  –→   ZnO + H2­

3)     Неактивные (Au, Ag, Pt) — не реагируют.

IV.    Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl2 →  Hg+ CuCl2

Fe+ CuSO4 →  Cu+ FeSO4