вторник, 16 февраля 2021 г.

 16.02.21 г. 208, 305, 106, 308

ГРУППА  208 (ХИМИЯ)

ТЕМА:  Свойства белков. Превращение белков в орга­низме. Успехи в изучении и синтезе белков. Химия и здоровье человека. Лекарства. 

Белки в природе

Белки – это молекулы жизни. Каждый живой организм содержит большое количество различных белковых молекул, при этом каждому виду присущи особые, свойственные только ему белки. Даже белки, выполняющие у различных видов одну и ту же функцию, отличаются друг от друга. Например, у всех позвоночных животных – рыб, птиц, млекопитающих – красные клетки крови содержат белок гемоглобин, переносящий кислород. Но гемоглобин у каждого вида животных свой, особенный. Молекула гемоглобина лошади отличается от соответствующего белка человека в 26 местах, свиньи – в 10 местах, а гориллы – всего лишь одной аминокислотой.

Функции белков в организме очень разнообразны. Есть белки – переносчики веществ (молекул, ионов) и электронов; есть биокатализаторы, ускоряющие реакции в миллиарды раз и отличающиеся удивительной специфичностью, есть регуляторы различных биологических процессов в организме – гормоны, например, инсулин, вазопрессин, окситоцин. Белки защищают организм от инфекции, они способны узнавать и уничтожать чужеродные объекты: вирусы, бактерии, клетки. Контакты клетки с внешней средой также выполняют разнообразные белки, умеющие различать форму молекул, регистрировать изменение температуры, ничтожные примеси веществ, отличать один цвет от другого.

Свойства белков

Свойства белков весьма разнообразны и определяются их строением.

1. По растворимости в воде белки делятся на два класса:

глобулярные белки – растворяются в воде или образуют коллоидные растворы; фибриллярные белки – в воде нерастворимы.

2. Денатурация. При нагревании, изменении кислотности среды происходит разрушение вторичной и третичной структуры белка с сохранением первичной. Это явление называют денатурацией.

Пример денатурации – свертывание яичных белков при варке яиц. Денатурация бывает обратимой (при употреблении алкоголя, солёной пищи) и необратимой. Необратимая денатурация может быть вызвана высокими температурами, радиацией, при отравлении организма солями тяжелых металлов, спиртами, кислотами.

ВИДЕО:

Свертывание белков при нагревании

Осаждение белков солями тяжелых металлов

Осаждение белков спиртом

3. Гидролиз белков – это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Анализируя продукты гидролиза, можно установить количественный состав белков.

4. Для белков известно несколько качественных реакций.

1.     Все соединения, содержащие пептидную связь, дают фиолетовое окрашивание при действии на них солей меди (II) в щелочном растворе. Эта реакция называется биуретовой.

ВИДЕО:

ВИДЕО:

Биуретовая реакция белков

2.     Белки, содержащие остатки ароматических аминокислот (фенилаланин, тирозин) дают желтое окрашивание при действии концентрированной азотной кислоты – ксантопротеиновая реакция.

ВИДЕО:

ВИДЕО:

Качественные реакции на белки: биуретовая и ксантопротеиновая

Ксантопротеиновая реакция белков

5. Амфотерные свойства белков

Очень важным для жизнедеятельности живых организмов является буферное свойство белков, т.е. способность связывать как кислоты, так и основания, и поддерживать постоянное значение рН различных систем живого организма.

Превращение белков в организме

Животные организмы строят свои белки из аминокислот тех белков, которые они получают с пищей. Поэтому наряду с жирами и углеводами белки – обязательный компонент нашей пищи.

Животные и растительные белки в пищеварительном тракте человека расщепляются на аминокислоты. В процессе переваривания пищи происходит гидролиз белков под влиянием ферментов. В желудке они расщепляются на более или менее крупные «осколки» – пептиды, которые далее в кишечнике гидролизуются до аминокислот. Последние всасываются ворсинками кишечника в кровь и поступают во все ткани и клетки организма. Здесь из аминокислот под действием ферментов синтезируются белки, свойственные тканям человеческого тела. Для синтезирования белков необходимо наличие определенных аминокислот. Но в одних белках, поступающих с пищей, имеются все необходимые человеку аминокислоты, а в других не все. Организм человека может сам синтезировать некоторые аминокислоты или заменять их другими. Но 10 аминокислот он образовать не в состоянии. Их  должен непременно получать с пищей.  Эти  кислоты  называются  незаменимыми (см. Приложения).

Белки, содержащие все необходимые аминокислоты, называют полноценными.  Остальные белки - неполноценные. Полноценными являются белки молока, сыра, мяса, рыбы, яиц,  бобовых.    Синтезом белков в клетках управляет ДНК. Он осуществляется на поверхности рибосом с помощью РНК. В организме человека белки почти не откладываются в запас. Излишки аминокислот в клетках печени превращаются в углеводы — глюкозу и гликоген или в резервный жир. Поэтому артистам балета слишком больших количеств белков в пище нужно избегать. Но и намеренное голодание, когда вследствие больших энерготрат организм, израсходовав запасы углеводов и жира, начинает тратить резервы белка, очень вредно. Это тратятся белки цитоплазмы клеток.

 

Судьба аминокислот в организме различна 

1. Основная их масса расходуется на синтез белков, которые идут на увеличение белковой массы организма при его росте и на обновление белков, распадающихся в процессе жизнедеятельности.

2. Синтез белков идет с поглощением энергии.

3. Аминокислоты используются в организме и для синтеза небелковых азотсодержащих соединений, например нуклеиновых кислот.

4. Часть аминокислот подвергается постепенному распаду и окислению.  

Успехи в изучении и синтезе белков

Основные сведения о составе и строении белков были получены при изучении их гидролиза (гидролиз белков – необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот). Установлено, что в результате гидролиза любого белка получается смесь α-аминокислот, причем наиболее часто встречаются в составе белков 20 α-аминокислот.

Как же аминокислоты образуют белковую молекулу? Еще в 80-х годах прошлого века русский ученый-биохимик А.Я. Данилевский на основании своих опытов впервые высказал гипотезу о пептидной связи между остатками аминокислот в белковой молекуле. В 1899 году исследованиями белков занялись немецкие химики-органики Эмиль Фишер и Франц Гофмейстер. Они высказали предположение, что в белках аминокислоты связаны за счет аминогруппы одной кислоты и карбоксила другой. При образовании такой связи выделяется молекула воды. Эта гипотеза была блестяще подтверждена экспериментально в 1907 году и получила название “полипептидной теории”.

Фишеру удалось синтетически получить полипептиды, в молекулы которых входили различные аминокислотные остатки, соединенные пептидными связями. 

Химический синтез широко применяют для получения пептидов, в т.ч. биологически активных гормонов и их разнообразных аналогов, используемых для изучения взаимосвязи структуры и биологической функции, а также пептидов, несущих антигенные детерминанты различных белков и применяемых для приготовления соответствующих вакцин. Первые химические синтезы белка в 60-е гг. (инсулина овцы и рибонуклеазы S), осуществленные в растворе с помощью тех же методов, которые используют при синтезе пептидов, были связаны с чрезвычайно большими сложностями. В каждом случае требовалось провести сотни химических реакций и окончательный выход белка был очень низок (менее 0,1%), в результате чего полученные препараты не удалось очистить. Позже были синтезированы некоторые химически чистые белки, в частности инсулин человека (П. Зибер и др.) и нейротоксин II из ядра среднеазиатской кобры (В.Т. Иванов). Однако до сих пор химический синтез белка представляет весьма сложную проблему и имеет скорее теоретическое, чем практическое значение. Более перспективны методы генетической инженерии, которые позволяют наладить промышленное получение практически важных белков и пептидов. 

Упрощенный синтез полипептидов можно представить так:

Вспомните: связь между остатками аминокислот, а именно: между группами С = О одной кислоты и N-H другой кислоты – называется пептидной (амидной), группа атомов –СО─NH ─ называется пептидной (амидной) группой.

Пептидная или белковая цепь представляет собой продукт поликонденсации аминокислот. Один из концов цепи, где находится остаток аминокислоты со свободной аминогруппой, называется N-концом, сама аминокислота – N-концевой; другой конец цепи с остатком аминокислоты, имеющим карбоксильную группу, называется С-концом, кислота – С-концевой.

Пептидную цепь всегда записывают, начиная с N-конца. В названии пептида за основу принимают С-концевую кислоту, остальные аминокислоты указывают как заместители с суффиксом –ил-, перечисляя их последовательно, начиная с N-конца. Название полученного дипептида: ГЛИЦИЛАЛАНИН 

ВИДЕО:

Качественное определение азота в органических соединениях

ГРУППА 305  (ХИМИЯ)

 

ТЕМА:  Кислоты и их свойства.Испытание растворов кислот индикаторами. Взаимодействие металлов с кислотами. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями. Взаимодействие кислот с солями.

Кислоты и их свойства.

Испытание растворов кислот индикаторами.

Кислоты обладают целым рядом общих химических свойств.
 
1.  Действие кислот на индикаторы.
 
Водные растворы кислот изменяют окраску индикаторов.
В кислой среде фиолетовый лакмус, метилоранж и универсальный индикатор становятся красными.
Окраска некоторых индикаторов в различных средах
Indicators.png
 
 
2. Взаимодействие кислот с металлами.
  
Кислоты взаимодействуют с металлами, стоящими в ряду активности металлов левее водорода. В результате реакции образуется соль и выделяется водород.
  
Ряд.jpg
  
Можно сказать, что металлы, расположенные в ряду активности левее, вытесняют водород из кислот.
 
Например, при взаимодействии магния с соляной кислотой образуется хлорид магния и выделяется водород:
  
Mg+2HClMgCl2+H2.
 
Эта реакция относится к реакциям замещения.
 
Необходимо отметить, что азотная кислота и концентрированная серная кислота с металлами взаимодействуют иначе (соль образуется, но водород при этом не выделяется).
  
  
3. Взаимодействие кислот с основными и амфотерными оксидами.
  
Кислоты реагируют с основными и амфотерными оксидами. В результате реакции обмена образуются соль и вода.
 
Например, при взаимодействии основного оксида калия с азотной кислотой образуется соль нитрат калия, а при взаимодействии амфотерного оксида алюминия с соляной кислотой образуется соль хлорид алюминия:
 
K2O+2HNO32KNO3+H2O,
 
Al2O3+6HCl2AlCl3+3H2O.
 
 
4. Взаимодействие кислот с основаниями и с амфотерными гидроксидами.
  
Кислоты реагируют с основаниями и с амфотерными гидроксидами, образуя соль и воду. 
  
Так же, как в предыдущем примере, при взаимодействии гидроксида калия и гидроксида алюминия с кислотами образуются соответствующие соли:
 
 KOH+HNO3KNO3+H2O,
 
Al(OH)3+3HClAlCl3+3H2O.
 
Реакции обмена между кислотами и основаниями называют реакциями нейтрализации.
  
5. Взаимодействие кислот с солями.
  
Реакции обмена между кислотами и солями возможны, если в результате образуется практически нерастворимое в воде вещество (выпадает осадок), образуется летучее вещество (газ) или слабый электролит.
 
А) Кислоты реагируют с растворами солей, если в результате реакции один из продуктов выпадает в осадок.
 
Например, при взаимодействии раствора серной кислоты с раствором хлорида бария в осадок выпадает сульфат бария, а при взаимодействии раствора силиката натрия с раствором азотной кислоты в осадок выпадает кремниевая кислота:
 
H2SO4+BaCl2BaSO4+2HCl, 
 
Na2SiO3+2HNO3H2SiO3+2NaNO3.
  
Б) Продукт реакции при обычных условиях, либо при нагревании, улетучивается.
 
Например, при действии концентрированной серной кислоты на кристаллический хлорид натрия образуется газообразный хлороводород, а при действии соляной кислоты на сульфид железа(II) выделяется газ сероводород:
 
NaCl(тв.)+H2SO4(конц.)Na2SO4+2HCl,
 
FeS+2HClFeCl2+H2S.
 
Примечание. Сокращение (тв.) означает «твёрдое вещество», а (конц.) — «концентрированный раствор».
 
В) Если кислота, которая вступает в реакцию, является сильным электролитом, то кислота, которая образуется — слабым.
 
Например, соляная кислота может вытеснить угольную из её соли:
  
 
2HCl+CaCO3CaCl2+H2O+CO2H2CO3.
 
 
Для того чтобы вынести суждение о возможности протекания реакции, можно воспользоваться вытеснительным рядом кислот:
 
HNO3H2SO4HClH2SO3H2CO3H2SH2SiO3H3PO4.
 
В этом ряду кислота, находящаяся левее, может вытеснить из соли кислоту, находящуюся правее.
 
 
6. Разложение кислородсодержащих кислот.
  
При разложении кислот образуются кислотный оксид и вода. Угольная кислота разлагается при обычных условиях, а сернистая и кремниевая кислота — при небольшом нагревании:
 
H2CO3H2O+CO2,
 
H2SO3toH2O+SO2,
 
H2SiO3toSiO2+H2O.
 
Обобщив вышесказанное, можно сделать вывод, что кислоты:
  • изменяют цвет индикаторов,
  • реагируют с металлами,
  • реагируют с основными и амфотерными оксидами,
  • реагируют с основаниями и амфотерными гидроксидами,
  • реагируют с солями,
  • некоторые кислоты легко разлагаются.
Посмотри обучающее видео по химическим свойствам кислот:
 
 






ГРУППА 106

ТЕМА:Ближайшие «родственники» человека

Ближайшие «родственники» человека



Необходимо запомнить

ВАЖНО!


Происхождение человека

Все современные люди принадлежат к одному биологическому виду Homosapiens — человек разумный. Из полутора миллионов видов животных, известных науке, только человеку присущи во всей полноте такие свойства, как сознание, речь, абстрактное мышление. Развитие этих свойств человеческой психики в сочетании с трудовой деятельностью способствовало возрастанию роли социальных отношений в эволюции человека, обеспечивших ему экологическое превосходство над всеми живыми существами, способность заселить практически все регионы Земли и выйти в Космос.

Осознавая свою уникальность, люди издавна пытались объяснить свое происхождение. Эти попытки породили множество легенд, верований и сказаний. Развитие науки, ископаемые останки, обнаруженные за последнее столетие, позволили ответить на многие вопросы, касающиеся происхождения человека. Сегодня известно, как выглядели предки человека, где и когда они впервые появились, в каком направлении эволюционировали. Тем не менее многое в истории возникновения и эволюции человека остается неясным.

Приступая к научному объяснению происхождения человека, следует помнить, что любой биологический вид является по-своему уникальным. Степень уникальности вида определяется тем, насколько сходны с данным видом его ближайшие родственники из числа ныне живущих организмов, тем, какое количество родственных форм вымерло ранее, а также тем, насколько уникальными были процессы, имевшие место в эволюции данного вида.

Молекулярные, цитогенетические и сравнительно-анатомические исследования показывают, что в современной природе наиболее близкими человеку являются два вида шимпанзе. Далее в этой системе родства следуют горилла и орангутан. По критериям зоологической систематики человека и перечисленных человекообразных обезьян относят к отряду приматов.

Данные сравнительной анатомии. Во внешнем облике, в строении и расположении внутренних органов человека и человекообразных обезьян много общего. Имеющиеся анатомические различия между этими организмами менее значительны, чем между человекообразными и остальными обезьянами, и связаны они прежде всего с разницей в способе передвижения.

В связи с прямохождением таз человека превратился в опору для позвоночника, который стал более массивным в своей нижней части и приобрел S-образный изгиб. Большое затылочное отверстие переместилось в нижнюю часть черепа. Изменились пропорции конечностей. Стопа утратила хватательную способность. Кисть, напротив, стала более развитой, чем у обезьян. Вслед за изменениями скелета изменилось положение внутренних органов.

Цитогенетические данные. Диплоидное число хромосом у всех крупных человекообразных обезьян равно 48. У человека диплоидный набор представлен 46 хромосомами. Два плеча второй хромосомы человека соответствуют двум разным хромосомам обезьян (12-й и 13-й у шимпанзе, 13-й и 14-й у гориллы и орангутана). Вторая хромосома человека возникла в ходе эволюции в результате слияния двух негомологичных хромосом, имевшихся у общего предка человека и человекообразных обезьян и сохранившихся у последних вплоть до настоящего времени. Другие различия кариотипов касаются структуры отдельных хромосом и обусловлены главным образом произошедшими инверсиями их участков. 

Данные молекулярной биологии. Последовательности аминокислот многих гомологичных белков человека и шимпанзе сходны более чем на 99%. Следствием этого являются близость групп крови, взаимозаменяемость многих белков (например, гормонов), сходные заболевания.

Важным открытием в области молекулярной биологии явилось установление постоянства скорости эволюции некоторых белков. Говоря об эволюции белка, подразумевают замены одних нуклеотидов на другие в гене, кодирующем этот белок. Скорость эволюции белка выражается в числе нуклеотидных замен, происходящих за единицу времени (млн лет). Если функция белка является очень специфичной и давно сложившейся, то такой белок эволюционирует в разных филогенетических линиях организмов приблизительно с постоянной скоростью. Этот факт позволяет оценить степень родства, а также установить последовательность и время дивергенции биологических видов. Примером таких белков служат белки — переносчики электронов в митохондриях.

Данные биологии развития. У детенышей шимпанзе есть признаки, свойственные человеку. С возрастом эти признаки у шимпанзе утрачиваются. Как и у людей, у детенышей шимпанзе тело покрыто редкими волосами. У них относительно крупный мозг (в сравнении с массой тела), защищенный выпуклым черепом. Кости черепа тонкие, не имеют сильно выраженных надглазничных валиков и затылочных гребней. Челюсти в меньшей степени выступают вперед, зубы небольшие. Затылочное отверстие расположено под средней частью черепа. Детеныши шимпанзе в возрасте до 3 лет способны гораздо лучше передвигаться на задних конечностях, чем взрослые особи.

Дивергенция человека и человекообразных обезьян на молекулярном и хромосомном уровнях выражена очень слабо. Если руководствоваться только молекулярно-биологическими и цитогенетическими данными, то человека и шимпанзе можно считать представителями одного рода. Тем не менее, огромные различия в поведении и деятельности, а также существующие морфологические различия заставили систематиков отнести человека и человекообразных обезьян не только к разным родам, но и к разным семействам. По-видимому, за те примерно 6—8 млн лет, которые прошли с момента дивергенции этих видов, человек эволюционировал чрезвычайно быстро в отношении морфологии и поведения, тогда как его молекулярная эволюция шла обычными темпами.

Предки человека

Прочитайте описание древнего человека и ответьте, о ком идет речь. Переверните карточку и проверьте себя.
Рост 120–150 см, масса 20–50 кг, объём мозга 450–650 см³.
Эта стадия представлена останками разных существ, найденными во многих географических районах Земли. Абсолютный возраст находок от 360 тыс. лет до 1,9 млн лет.
Австралопитек
Череп и челюсти менее массивные, ноги стали длиннее, а руки короче. Рост примерно 150 см. Объём мозга 900–1200 см.
Обезьяночеловек, или «яванский человек» – ископаемый подвид людей. Homo erectus (наряду с гейдельбергским человеком в Европе и синантропом в Китае), характерный преимущественно для Юго-Восточной Азии и не породивший непосредственных предков современного человека.
Питекантроп
Объём мозга 850–1220 см³. Рост – 155–160 см.
Собирательство и охота, строили жилища, поддерживали огонь, имели зачатки членораздельной речи.
Синантроп

Систематическое положение человека

Рассмотрите изображения животных, переверните карточку и узнайте, какие признаки достались человеку от животных.
Тип Хордовые. В эмбриогенезе закладываются хорда, нервная трубка, кишечник.
Подтип Позвоночные. Внутренний скелет (позвоночник), замкнутая кровеносная система, нервная система образована головным и спинным мозгом, нервами и нервными узлами.
Класс Млекопитающие. Есть диафрагма, легкие состоят из альвеол, имеют постоянную температуру тела, 4-х камерное сердце, кожа с потовыми железами, зубы дифференцируются на коренные, клыки, резцы, три слуховые косточки в среднем ухе, ушная раковина, волосяной покров.
Подкласс Плацентарные. Плод вынашивается в матке, где есть плацента – детское место, и детеныш выкармливается молоком, которое вырабатывается в молочных железах матери.
Отряд Приматы. Пятипалая конечность, на пальцах ногти, большой палец противопоставлен остальным.
Семейство Гоминиды. До 90 % одинаковых генов, болезней, отсутствие хвоста, группы крови, способность к обучению.
Род Человек (Homo). Отличия: развитый головной мозг, речь, прямохождение, хватательные функции только у рук, ноги выполняют опорную функцию, есть свод стопы, изгибы позвоночника.
Homo sapiens. Человек разумный. Cоциальная эволюция.

ГРУППА 308 (ХИМИЯ) 

ТЕМА: 

Контрольная работа № 2  по теме «Углеводороды».

1.Определите углеводород, лишний в данном ряду:

а) С7Н8                            б) С6Н6                                                 в) С8Н10                       г) С5Н6

2. Гомологом пентана может быть:

а) С3Н8                  б) С2Н4                                                в) С6Н6                         г) С7Н12

3.Третичный атом углерода имеется в молекуле:

а) этана        б) 2,2-диметилпропана              в)2-метилпропана          г) пропана

4.Укажите формулу, которая может соответствовать диеновому углеводороду:

а) С2Н6                       б) С8Н14                                              в) С12Н26                                 г) С6Н6

5. Слабые кислотные свойства проявляют:

а) алканы                    б) алкены                      в) алкины                   г) арены

6.Цис-транс-изомеры имеет:

а) этен                 б) пентен-2                 в)2-метилпентен-2              г) пентен-1

7. Допишите уравнение реакции и определите её тип:

С6Н5---СН3 + Br2

а) обмен           б) присоединение          в) полимеризация         г) замещение

8. Атомы углерода в sp-гибридном состоянии содержатся в молекуле

а) аренов               б) алкинов              в) альдегидов              г) алканов

9. Промышленным процессом переработки каменного угля является:

а) ректификация         б) электролиз         в) коксование        г) крекинг

 

10.Определите, какое количество вещества оксида углерода (IV) образуется при сжигании природного газа массой 8,2 г, содержащего 5% этана.

11. Осуществите превращения, укажите условия их проведения и назовите продукты реакции:

CH4       CH3Br ⇾       CH3-CH3         ⇾         CH2 = CH2