понедельник, 3 октября 2022 г.

ПОНЕДЕЛЬНИК 03.10.22 Г. 501,408,308

  ПОНЕДЕЛЬНИК 03.10.22 Г. 501,408,308

Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 501 БИОЛОГИЯ 1,2


ТЕМА 1 
Биология – это наука о живой природе, о закономерностях, управляющих ею. Что изучает биология? Биология как наука изучает структуру, происхождение, рост, функционирование и эволюцию живых организмов.

Биология наука о живой природе. Основу биологии составляют 5 фундаментальных принципов. Это клеточная теория, гомеостаз, генетика, эволюция и энергия. Задачей общей биологии является выявление, а также объяснение общих процессов и явлений для всех организмов. Биология как наука позволяет накопить знания о происходящем в живом мире, хранить их на различных носителях и использовать по мере необходимости. Биологические науки подразделяют по типу исследуемых организмов. Зоология изучает животных, ботаника - растения, а микробиология изучает одноклеточные микроорганизмы. Внутри, биология как наука делится на области по масштабу исследования, или по применяемым методам. Так, предметом изучения гистологии и анатомии является строение организма и тканей, генетики – передача наследственной информации, биохимии - химические основы жизни, молекулярной биологии - взаимодействие между биологическими молекулами, физиологии - химические и физические функции органов и др.

Признаки живого организма:

  • обладает сложным внутренним строением;
  • у любой части организма имеется специальное назначение, и она выполняет возложенные на нее функции;
  • извлекает, преобразовывает и использует энергию, поступающую из окружающей среды, обменивается веществом и энергией;
  • реагируют на изменение окружающей среды (на внешний раздражитель);
  • способность к адаптации, то есть организмы приспосабливаются к окружающей среде;
  • способность к размножению;
  • способность к эволюции (происходит изменение от простого к сложному).

Мир живого разнообразен и имеет сложную структуру.

Организация жизни осуществляется на различных уровнях. Самый нижний уровень – молекулярных структур. Клеточный уровень. Органно-тканевый уровень. При этом уровне организмы являются многоклеточными. Целостного организма. Популяционно-видовой уровеньУровень биоценозов, то есть сообществ всех видов, которые населяют территорию. Биосфера. Это совокупность живого на Земле. Целостная (живая) система обладает следующими качествами:

  • единство химического состава;
  • открытость живых систем;
  • живые системы – саморегулирующиеся, самоорганизующиеся, самоуправляющиеся, самовоспроизводящиеся системы;
  • изменчивость;
  • способность к развитию и росту, то есть к увеличению в массе и размерах, возникновению новых качеств и черт;
  • дискретность и целостность.

Методы изучения. Биология для изучения живых организмов применяет множество разнообразных методов.

Например, к ним можно отнести:

  • Наблюдение. Дает возможность выявлять объекты и различные явления.
  • Эксперимент. Моделируется ситуация, при которой выявляются свойства изучаемых биологических объектов.
  • Сравнение. Позволяет устанавливать общие для различных явлений закономерности.
  • Исторический метод. Познание осуществляется с учетом имеющихся данных об органическом мире. Для изучения биологических объектов применяется различная техника. Это: компьютеры, микроскопы, химические анализаторы, ультрацентрифуги, и многая другая техника.

Биология как наука очень важна для людей, так как исследования, которые проводятся, позволяют нам больше знать о процессах и явлениях, происходящих в живом мире и использовать этот бесценный опыт в повседневной жизни, решить глобальные мировые проблемы. Знание законов биологии позволяет решить практические задачи, например, обеспечить население продовольствием. Агрономия и зоотехника опираются на биологию. Медицина не может обойтись без знания структуры (анатомии) тела человека.

ТЕМА 2:   Неорганические соединения клетки.

 Неорганические вещества клетки

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

    • макроэлементы  – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;
    • микроэлементы  – В, Ni, Cu, Co, Zn, Mb и др.;
    • ультрамикроэлементы  – U, Ra, Au, Pb, Hg, Se и др.

 

Другой принцип классификации элементов:

  • органогены (кислород, водород, углерод, азот),
  • макроэлементы,
  • микроэлементы.

В состав клетки входят молекулы неорганических  и органических  соединений. 

Неорганические соединения клетки – вода  и неорганические  ионы.
Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды

Значение для биологических процессов

Высокая теплоемкость (из-за водородных связей между молекулами) и теплопроводность (из-за небольших размеров молекул)

Транспирация
Потоотделение
Периодическое выпадение осадков

Прозрачность в видимом участке спектра

Высокопродуктивные биоценозы прудов, озер, рек ( из-за возможности фотосинтеза на небольшой глубине)

Практически полная несжимаемость (из-за сил межмолекулярного сцепления)

Поддержание формы организмов: форма сочных органов  растений, положение трав в пространстве, гидростатический скелет круглых червей, медуз, амниотическая жидкость поддерживает и защищает плод млекопитающих

Подвижность молекул (из-за слабости водородных связей)

Осмос: поступление воды из почвы; плазмолиз

Вязкость (водородные связи)

Смазывающие свойства: синовиальная жидкость в суставах, плевральная жидкость

Растворитель  (полярность молекул)

Кровь, тканевая жидкость, лимфа, желудочный сок, слюна, у животных; клеточный сок у растений; водные организмы используют растворенный в воде кислород

Способность образовывать гидратационную оболочку вокруг макромолекул (из-за полярности молекул)

Дисперсионная среда в коллоидной системе цитоплазмы

Оптимальное для биологических систем значение сил поверхностного натяжения (из-за сил межмолекулярного сцепления)

Водные растворы – средство передвижения веществ в организме

Расширение при замерзании (из-за образования каждой молекулой максимального числа – 4 – водородных связей_

Лед легче воды, выполняет в водоемах функцию теплоизолятора

 

Неорганические ионы:
катионы K+, Na+, Ca2+ , Mg2+  и анионы Cl–, NO3- ,  PO4 2-,  CO32-, НPO42-.

Разность между количеством катионов и анионов (Nа+, К+, Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.
Анионы фосфорной  кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6—9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7—4.
Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.
Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих.
Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

Таблица. Роль макроэлементов на клеточном и организменном уровне организации. (для ознакомления)





Таблица. Роль микроэлементов в жизни клетки, растительного и животного организмов.


Тесты

Часть А

А1. Полярностью воды обусловлена ее способность
1) проводить тепло          
3) растворять хлорид натрия
2) поглощать тепло         
4) растворять глицерин


А2. Больным рахитом детям необходимо давать препараты, содержащие
1) железо
2) калий
3) кальций
4) цинк


А3. Проведение нервного импульса обеспечивается ионами:
1) калия и натрия
2) фосфора и азота
3) железа и меди
4) кислорода и хлора


А4. Слабые связи между молекулами воды в ее жидкой фазе называются:
1) ковалентными
2) гидрофобными
3) водородными 
4) гидрофильными


А5. В состав гемоглобина входит
1) фосфор
2) железо
3) сера
4) магний


А6. Выберите группу химических элементов, обязательно входящую в состав белков
1) Na, K, O, S        
2) N, P, C, Cl         
3) C, S, Fe, O         
4) C, H, O, N


А7. Пациентам с гипофункцией щитовидной железы дают препараты, содержащие
1) йод        
2) железо      
3) фосфор     
4) натрий

Часть В

В1. Выберите функции воды в клетке
1) энергетическая            
2) ферментативная     
3) транспортная
4) строительная              
5) смазывающая       
6) терморегуляционная


В2. Выберите только физические свойства воды
1) способность к диссоциации        
2) гидролиз солей            
3) плотность
4) теплопроводность        
5) электропроводность      
6) донорство электронов

Часть  С

С1. Какие физические свойства воды определяют ее биологическое значение?

ГРУППА 408 БИОЛОГИЯ 13,14

ТЕМА13: 

Экологическая ниша и межвидовые отношения.



Экологическая ниша-место, занимаемое видом (точнее — его популяцией) в сообществе (биоценозе), комплекс его биоценотических связей и требований к абиотическим факторам ср. Введен в 1927 году Чарльзом Элтоном. Экологическая ниша представляет собой сумму факто­ров существования данного вида, основным из которых является его место в пищевой цепочке.  Разнообразные формы биотических отношений, в которые вступают те или иные виды в биоценозе (конкуренция, комменсализм, мутуализм, хищник-жертва и др.), определяют основные условия их жизни в сообществе, возможности добывания пищи и за­воевания нового пространства.

Прямые и косвенные межвидовые отношения подразделяются на 4типа: 1 Трофические связи наблю-ся, когда 1-н вид питается другим либо их мертвыми остатками, или продуктами их жиз­недеятельности, При конкуренции 2-х видов за объект питания возникает косвенная трофическая связь, вследствие того что деятельность 1-го отражается на снабжении кормом другого(гусеницы бабо­чек-монашенок, объедая хвою сосен, облег­чают короедам доступ к ослабленным де­ревьям).2.Топические связи характеризуют любое физическое или химическое изменение условий обитания 1-го вида в результате жизнедеятельности другого. Заключается в создании 1-м видом среды для другого, в форми­ровании субстрата, на котором поселяются или избегают поселяться представители других видов. Напр, лишайники на стволах деревьев связаны прямой топической связью с организ­мами, представляющими им субстрат или ср обитания. В рез-те положительных или отрица­тельных топических взаимоотношений одни виды определяют или исключают возможность существования в биоценозе других видов. В биоценозе трофические и топические связи имеют наи­большее значение, составляют основу его существования. 3. Форические связи- участие 1-го вида в распространении другого. В роли транспортировщиков выступают живот­ные(перенос животными семян, спор, пыльцы растений-зоохория; перенос более мелких жив- форезия).Перенос осущ-ся с помощью спец и разнообразных приспособлений. Форе­зия животных преимущественно распростра­нена среди мелких членистоногих.Так, многие летающие насекомые-посетители скоплений быстро разлагающихся органических остатков (трупов, животных, куч гниющих растений) несут на себе клещей, переселяющихся данным способом от одного скопления пищ материалов к другому. 4.Фабрические связи – это такой тип биоценотических отношений, в которые вступает вид, использующий для своих сооружений (фабрикаций) продукты выделения, либо мертвые остатки, либо даже живых особей другого вида. Так, птицы употребляют для постройки гнезд ветви деревьев, шерсть млекопитающих, траву, листья, пух и перья других видов птиц и т. п. Личинки ручейников строят домики из кусочков веток, коры или листьев растений, из раковин мелких видов катушек, захватывая даже раковинки с живыми моллюсками.


Эко­ло­ги­че­ские пи­ра­ми­ды — это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.

Различают три типа экологических пирамид: энергии, биомассы и численности.

 

О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах».

Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Принцип построения экологических пирамид

Основание пирамиды образуют продуценты (растения).

Над ними располагаются консументы первого порядка (травоядные).

Следующий уровень представляют консументы второго порядка (хищники).

И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи.




Пирамида биомасс  показывает соотношение биомасс организмов разных трофических уровней, изображённых графически таким образом, что длина или площадь прямоугольника, соответствующего определённому трофическому уровню, пропорциональна его биомассе.

В любой трофической цепи не вся пища используется на рост особи, т. е. на формирование биомассы (часть её расходуется на удовлетворение энергетических затрат организмов: дыхание, движение, размножение, поддержание температуры тела и т. д.). Следовательно, в каждом последующем звене пищевой цепи происходит уменьшение биомассы.

Правило экологической пирамиды биомасс отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Пирамида численности, или чисел  — отображение числа особей на каждом из трофических уровней данной экосистемы.

Пирамиды чисел отражают только плотность населения организмов на каждом трофическом уровне, но не скорость самовозобновления (оборота) организмов.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения.

По этой причине пирамиды численности могут быть перевёрнутыми, т. е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне.

Например, на одном дереве может жить и кормиться множество насекомых (перевёрнутая пирамида численности).


 Примеры решения задач

1. Определите, какую массу растений сохранит от поедания гусеницами пара синиц при выкармливании 5 птенцов. Вес одного птенца 3 грамма.

Решение: определяем вес 5 птенцов: 1 птенец – 3гр; 5 птенцов – 15гр

 Составим цепь питания:

растения – гусеницы – синицы

Согласно правилу экологической пирамиды – на каждом предыдущем трофическом уровне количество биомассы и энергии, которые запасаются организмами за единицу времени, больше чем на последующем ~ в 10 разОтсюда:

растения – гусеницы – синицы

1500г          150г           15г

Ответ: пара синиц, выкармливая своих птенцов, сохраняет 1500 г растений.

2. Какая масса растений необходима для существования лисы, массой 8 кг, из которых 70% вода?

Решение

Определяем сухую массу лисы:  8 кг — 100%      

х кг — 30%           х=8*30:100=2,4 кг

х = 2,4 кг

Составим цепь питания:

растения – зайцы – лиса

Согласно правилу экологической пирамиды:

растения – зайцы – лиса

240кг         24кг         2,4кг

Ответ: масса растений, необходимая для существования лисы равна 240 кг

ТЕМА 14: Практическая работа №1 «Составление схем переноса веществ и энергии в экосистемах (пищевых цепей и сетей)".


Цель: (по теме -сформулируйте самостоятельно)


Ход работы.


1.Назовите организмы, которые должны быть на пропущенном месте следующих  пищевых   цепей.

Запишите эти цепи.


2. Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.


Пример пищевой сети



ВЫВОД:  Пищевая (трофическая) цепь представляет собой ряд взаимоотношений между группами организмов (растений,животных, грибов и микроорганизмов) при котором происходит перенос энергии путём поедания одних особей другими. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80–90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4–5.


ГРУППА 308 ХИМИЯ 14

ТЕМА 14 Реакции ионного обмена.

Определение

Реакции, протекающие между ионами в растворах электролитов называются реакциями ионного обмена (РИО).

Реакции ионного обмена – это реакции между сложными веществами в растворах, в результате которых реагирующие вещества обмениваются своими составными частями. Так как в этих реакциях происходит обмен ионами – они называются ионными.

 В ходе РИО не происходит изменение степеней окисления элементов, поэтому РИО не являются окислительно-восстановительными. 

Критерием необратимости реакций ионного обмена служит образование слабого электролита.

Правило Бертолле: Реакции обмена в растворах электролитов протекают до конца (возможны) только тогда, когда в результате реакции образуется либо твердое малорастворимое вещество (осадок), либо газ, либо вода или любой другой слабый электролит.

 

 

Например, нитрат серебра взаимодействует с бромидом калия

AgNО3 + КВr = АgВr↓ + КNО3

 

Правила составления уравнений реакций ионного обмена

 

1. Записываем молекулярное уравнение реакции, не забывая расставить коэффициенты:    

3KOH +FeCl3 = Fe(OH)3 + 3KCl

2. С помощью таблицы растворимости определяем растворимость каждого вещества. Подчеркнем вещества, которые мы не будем представлять в виде ионов.

                                             р           р             н                р

3KOH + FeCl= Fe(OH)+  3KCl

3. Составляем полное ионное уравнение. Сильные электролиты записываем в виде ионов, а слабые электролиты, малорастворимые вещества и газообразные вещества записываем в виде молекул.

3K+ + 3OH + Fe3+ + 3Cl =   Fe(OH)3 + 3K+ 3Cl

4. Находим одинаковые ионы (они не приняли участия в реакции в левой и правой частях уравнения реакции) и сокращаем их слева и справа.

3K+ + 3OH + Fe3+ + 3Cl =  Fe(OH)3 + 3K3Cl

5. Составляем итоговое сокращенное ионное уравнение (выписываем формулы ионов или веществ, которые приняли участие в реакции).

Fe3+ +  3OH = Fe(OH)3

На ионы мы не разбиваем:

  • Оксиды; осадки; газы; воду; слабые электролиты (кислоты и основания)
  • Анионы кислотных остатков кислых солей слабых кислот (НСО3, Н2РО4 и т.п.) и катионы основных солей слабых оснований Al(OH)2+
  • Комплексные катионы и анионы: [Al(OH)4]

 

Например, взаимодействие сульфида цинка и серной кислоты

Составляем уравнение реакции и проверяем растворимость всех веществСульфид цинка нерастворим.

                                             н          р              р           р

ZnS + H2SO4 = ZnSO4 + H2S  

Реакция протекает до конца, т.к. выделяется газ сероводород, который является слабым электролитом. Полное ионно-молекулярное уравнение:

ZnS + 2H+ + SO42 = Zn2+ + SO42 + H2S

Сокращаем ионы, которые не изменились в процессе реакции – в данном случае это только сульфат-ионы, получаем сокращенное ионное уравнение:

      ZnS + 2H+ = Zn2+ + H2S

 

Например, взаимодействие гидрокарбоната натрия и гидроксида натрия

Составляем уравнение реакции и проверяем растворимость всех веществ:

                                              р               р              р

NaHCO3 + NaOH = Na2CO3 + H2O

Кислые анионы слабых кислот являются слабыми электролитами и на ионы не разбиваются:

Na+ + НСО3 + Na+ + ОН = 2Na+ + CO32- + H2O

Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:

НСО3+ ОН = CO32- + H2O

 

Например, взаимодействие тетрагидроксоалюмината натрия и соляной кислоты

Составляем уравнение реакции и проверяем растворимость всех веществ:

                                            р               р          р           р

Na[Al(OH)4] + 4HCl = NaCl + AlCl3 + H2O

Комплексные ионы являются слабыми электролитами и на ионы не разбиваются:

Na+ + [Al(OH)4] + 4H+ + 4Cl = Na+ + Cl + Al3+ + 3Cl + H2O

Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:

[Al(OH)4] + 4H+ =  Al3+ + 4H2O