ВТОРНИК, 29.03.22 г. 405, 308, 405 , 408
ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ:
СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ, И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . ВНИМАНИЕ!!! На выполнение задания отводится 1 неделя. Моя почта : rimma.lu@gmail.com Жду ваши фотоотчеты!
Критерии оценивания: Для получения отличной оценки обучающийся должен:- соблюдать отведенное время; разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.
ГРУППА 405 БИОЛОГИЯ, 29
ТЕМА: Наследственная изменчивость человека. Лечение и предупреждение некоторых наследственных болезней человека.
Наследственная изменчивость человека. Лечение и предупреждение некоторых наследственных болезней человека.
- Итак, мы с вами продолжаем изучать живые организмы на клеточном уровне. Давайте вспомним, что же такое клетка?
Клетка – это структурно-функциональная элементарная единица строения и жизнедеятельности всех живых организмов.
- Что же в ней такого уникального?
Клетка обладает собственным обменом веществ, так как является открытой системой; способна к самостоятельному существованию, самовоспроизведению, а также является одноклеточным организмом (дробянки и цианобактерии).
А на какие две группы делятся клеточные организмы?
На прокариоты и эукариоты, а в чем различия между этими двумя группами организмов?
Различие в особенностях строения есть – это наличие кольцевой хромосомы у прокариотов (нуклеоид) и наличие оформленного ядра у эукариотов.
Живые организмы
прокариоты эукариоты
не имеют оформленного яра имеют оформленное ядро
Бактерии Грибы
Цианобактерии Растения
Животные
Давайте вспомним, как выглядят клетки прокариот:
А теперь давайте вспомним особенности строения ядра.
Что же является самой главной частью ядра? Правильно, хромосомы, потому что в них находится наследственная информация.
НА организм влияют мутагены, вызывающие мутационную изменчивость. И сегодня на уроке именно этот вопрос мы рассмотрим более подробно.
Мутаген – соединение химической, биологической или физической природы, способное прямо или косвенно повреждать наследственные структуры клетки. (определение записать в тетрадь).
Мутация – в широком смысле слова внезапно возникающее наследуемое изменение. Другими словами мутация – любое структурное или композиционное изменение в ДНК организма произошедшее спонтанно или индуцированное мутагенами. (определение записать в тетрадь).
По происхождению мутагены можно разделить на экзогенные (многие факторы внешней среды) и эндогенные (образуются в процессе жизнедеятельности организма).
По природе возникновения различают: физические, химические и биологические мутагены.
По этому вопросу нам расскажут ребята в своих сообщениях. (Задания на опережающее обучение).
А теперь давайте рассмотрим, какие же мутации возникают у живых организмов на примере человеческого организма. (Задания на опережающее обучение).
Мутации
(виды мутаций записать в тетрадь)
Точечные или генные – изменение в структуре гена, вызванные нарушением последовательности нуклеотидов в молекулах нуклеиновых кислот (выпадение или добавление отдельных нуклеотидов, замена одного нуклеотида другим). (Задания на опережающее обучение).
Хромосомные связаны с изменениями количества отдельных гомологичных хромосом или в их строении. (Задания на опережающее обучение).
Геномные (полиплоидия) – у животных и человека встречается очень редко. (так как этот тип мутаций нарушает функционирование хромосомного механизма определения пола; если количество половых хромосом превышает две, у организмов отмечаются нарушения в развитии и они или погибают, или остаются неспособны к размножению). У растений таких ограничений нет, так как у них нет половых хромосом.
ГРУППА 405 ХИМИЯ,30, 31
ТЕМА:Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы.
ТЕМА:Степень электролитической диссоциации.
Электролитическая диссоциация
Понятие электролитов впервые ввел М. Фарадей в первой половине XIX века. Согласно его определению:
Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.
Опустим в стакан с водой графитовые стержни, присоединенные к источнику тока и связанные цепью с электрической лампой. При включении рубильника никаких видимых изменений не происходит. Это означает, что вода не проводит электрический ток, то есть не является электролитом. Внесем в стакан с водой поваренную соль – хлорид натрия,
Атомы и группы атомов, несущие электрический заряд, называют ионами. Положительно заряженные ионы называют катионами, отрицательно заряженные ионы - анионами.
Проведя дополнительный опыт, можно убедиться, что сухая поваренная соль не проводит электрический ток. Таким образом, можно сделать вывод, что свободные ионы появляются в расплаве и при растворении соли в воде.
Рассмотрим на атомарном уровне, что происходит с кристаллом поваренной соли при попадании его в воду. Соль – вещество с ионной кристаллической решеткой, в узлах которой расположены катионы натрия и анионы хлора. Они удерживаются друг около друга благодаря силам электростатического притяжения.
Молекула воды представляет собой диполь, так как на атомах водорода локализованы частичные положительные заряды, на на атоме кислорода – отрицательный.
В молекуле воды атомные орбитали кислорода находятся в
Для объяснения свойств водных растворов электролитов С. Аррениус в 1887 году предложил теорию электролитической диссоциации. Эта теория объясняла, почему растворы некоторых веществ проводят электрический ток, но не отвечала на вопрос, почему одни вещества являются электролитами, а другие - нет. Более подробно особенности поведения веществ в растворах описал Д.И. Менделеев, который экспериментально доказал, что при растворении электролитов происходит химическое взаимодействие между молекулами растворенного вещества и молекулами растворителя. Сущность процесса электролитической диссоциации было объяснено на основании природы химической ионной связи.
Согласно теории Д.И. Менделеева, электролитическая диссоциация молекул электролитов протекает в три стадии. Рассмотрим эти стадии на примере поваренной соли NaCl.
1. При попадании в воду, молекулы воды окружают кристаллы поваренной соли, притягиваясь к катионам натрия своими отрицательно заряженными концами, а к анионам хлора - положительно заряженными. Эта стадия называется ассоциация.
2. За счет электростатического взаимодействия, молекулы воды "растаскивают" молекулу электролита, связь между ионами в кристалле ослабевает и разрывается, то есть происходит непосредственно диссоциация (распад) молекул.
3. Диполи воды полностью окружают образовавшиеся при распаде ионы, катионы и анионы, образуя гидратную оболочку. Гидратированные ионы переходят в раствор.
В неводных растворах в качестве диполей может выступать не вода, а другой полярный растворитель, например, этанол. В таком случае ионы окружены молекулами растворителя (образуют сольватную оболочку) и называются сольватированными.
Ионы в водном растворе окружены молекулами воды, то есть имеют гидратную оболочку, и называются гидратированными.
Таким образом, описанный выше процесс можно описать уравнением:
где
В большинстве случаев этот процесс записывают упрощенно, не указывая гидратированное состояние ионов:
Процесс распада вещества на ионы при растворении в воде или расплавлении называют электролитической диссоциацией.
Электролитическая диссоциация состоит из двух одновременно протекающих обратных процессов: из диссоциации (распад молекул на ионы) и ассоциации (процесс образования молекул из ионов). Поэтому в уравнении электролитической диссоциации всегда ставят знак
В водных растворах диссоциации подвержены кислоты, сильные основания и растворимые соли:
При диссоциации происходит резкое увеличение числа частиц в растворе – это отличает растворы электролитов от растворов неэлектролитов. Именно поэтому растворы солей замерзают при более низкой температуре, чем растворы неэлектролитов.
Особенно сильно гидратирован ион водорода
Основные положения Теории электролитической диссоциации
Согласно теории электролитической диссоциации С. Аррениуса и Д. И. Менделеева можно сформулировать основные положения теории электролитической диссоциации (ТЭД):
- При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).
- Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией).
Степень электролитической диссоциации
Основываясь на теории электролитической диссоциации можно дать определения важнейшим классам неорганических соединений
Название | Определение | Уравнение диссоциации |
Оксиды | Неэлектролиты, состоят из атомов элемента и кислорода | Не диссоциируют в водных растворах |
Кислоты | Электролиты, при диссоциации образуют катионы водорода | |
Основания | Электролиты, при диссоциации образуют гидроксид-анионы.Растворимые в воде основания называют щелочами | |
Соли | Электролиты, при диссоциации образуют катионы металла и анионы кислотного остатка | |
ТЕМА:Степень электролитической диссоциации.
Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы.Степень электролитической диссоциации.
еорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.
Электролитическая диссоциация – это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.
Например, уксусная кислота диссоциирует так в водном растворе:
CH3COOH⇄H++CH3COO-.
Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).
Степень диссоциации α – отношение числа молекул, распавшихся на ионы, к общему числу молекул:
α=v´(x)/v(x).
Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.
Различают сильные и слабые электролиты.
Сильные электролиты – это те электролиты, степень диссоциации которой превышает 30%.
Электролиты средней силы – это те, степень диссоциации которой делит в пределах от 3% до 30%.
Слабые электролиты – степень диссоциации в водном 0,1 М растворе меньше 3%.
Примеры слабых и сильных электролитов.
Сильные электролиты | Слабые электролиты |
Практически все соли и кислоты: HBr, KOH, NaOH, Ca(OH)2, HNO3, HClO4. | Большинство кислот и оснований: H2S. H2CO3. Al(OH)3, NH4OH. |
Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.
Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.
КАЖУЩАЯСЯ СТЕПЕНЬ ДИССОЦИАЦИИ.
Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.
Уравнение диссоциации можно представить в следующем виде:
AK ⇄ A- + K+.
И степень диссоциации можно выразить так:
С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.
Причины и механизм диссоциации электролитов объясняются химической теорией раствора Д. И. Менделеева и природой химической связи. Как известно, электролитами являются вещества с ионной или ковалентной сильно полярной связями. Растворители, в которых происходит диссоциация, состоят из полярных молекул. Например, вода — полярный растворитель. Диссоциация электролитов с ионной и полярной связями протекает различно. Рассмотрим механизм диссоциации электролитов в водных растворах.
I. Механизм диссоциации электролитов с ионной связью.
При растворении в воде ионных соединений, например хлорида натрия NaCl, дипольные молекулы воды ориентируются вокруг ионов натрия и хлорид-ионов. При этом положительные полюсы молекул воды притягиваются к хлорид-ионам Сl—, отрицательные полюсы — к положительным ионам Na+ .
В результате этого взаимодействия между молекулами растворителя и ионами электролита притяжение между ионами в кристаллической решетке вещества ослабевает. Кристаллическая решетка разрушается, и ионы переходят в раствор. Эти ионы в водном растворе находятся не в свободном состоянии, а связаны с молекулами воды, т. е. являются гидратированными ионами.
II. Механизм диссоциации электролитов, которые состоят из полярных молекул
При растворении в воде веществ с полярной ковалентной связью происходит взаимодействие дипольных молекул электролита с дипольными молекулами воды. Например, при растворении в воде хлороводорода происходит взаимодействие молекул НСl с молекулами Н2O.
Для простоты в химических уравнениях ионы изображают без молекул воды: Н+ , Ag+, Mg2 +, F—, SO42- и т. д.
Источник: https://himya.ru/elektroliticheskaya-dissociaciya.html
|