вторник, 29 марта 2022 г.

 ВТОРНИК, 29.03.22 г. 405, 308, 405 , 408


ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО  НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ: 

СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И  НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ,  И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . ВНИМАНИЕ!!! На выполнение задания отводится 1 неделя. Моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

Критерии оценивания: Для получения отличной оценки обучающийся должен:- соблюдать отведенное время; разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.

ГРУППА 405 БИОЛОГИЯ, 29  

ТЕМА: Наследственная изменчивость человека. Лечение и предупреждение некоторых наследственных болезней человека.

Наследственная изменчивость человека. Лечение и предупреждение некоторых наследственных болезней человека.

- Итак, мы с вами продолжаем изучать живые организмы на клеточном уровне. Давайте вспомним, что же такое клетка?

 Клетка – это структурно-функциональная элементарная единица строения и жизнедеятельности всех живых организмов.


- Что же в ней такого уникального?

Клетка обладает собственным обменом веществ, так как является открытой системой; способна к самостоятельному существованию, самовоспроизведению, а также является одноклеточным организмом (дробянки и цианобактерии).


А на какие две группы делятся клеточные организмы?

На прокариоты и эукариоты, а в чем различия между этими двумя группами организмов?

Различие в особенностях строения есть – это наличие кольцевой хромосомы у прокариотов (нуклеоид) и наличие оформленного ядра у эукариотов.



Живые организмы

прокариоты эукариоты


не имеют оформленного яра имеют оформленное ядро

Бактерии Грибы

Цианобактерии Растения

Животные


Давайте вспомним, как выглядят клетки прокариот:



hello_html_51262afd.pnghello_html_m3510c18c.jpg



А теперь давайте вспомним особенности строения ядра.


hello_html_m34adafd9.jpg


Что же является самой главной частью ядра? Правильно, хромосомы, потому что в них находится наследственная информация.

НА организм влияют мутагены, вызывающие мутационную изменчивость. И сегодня на уроке именно этот вопрос мы рассмотрим более подробно.


Мутаген – соединение химической, биологической или физической природы, способное прямо или косвенно повреждать наследственные структуры клетки. (определение записать в тетрадь).


Мутация – в широком смысле слова внезапно возникающее наследуемое изменение. Другими словами мутация – любое структурное или композиционное изменение в ДНК организма произошедшее спонтанно или индуцированное мутагенами. (определение записать в тетрадь).

По происхождению мутагены можно разделить на экзогенные (многие факторы внешней среды) и эндогенные (образуются в процессе жизнедеятельности организма).

По природе возникновения различают: физические, химические и биологические мутагены.


По этому вопросу нам расскажут ребята в своих сообщениях. (Задания на опережающее обучение).

А теперь давайте рассмотрим, какие же мутации возникают у живых организмов на примере человеческого организма. (Задания на опережающее обучение).


Мутации

(виды мутаций записать в тетрадь)

Точечные или генные – изменение в структуре гена, вызванные нарушением последовательности нуклеотидов в молекулах нуклеиновых кислот (выпадение или добавление отдельных нуклеотидов, замена одного нуклеотида другим). (Задания на опережающее обучение).


Хромосомные связаны с изменениями количества отдельных гомологичных хромосом или в их строении. (Задания на опережающее обучение).


Геномные (полиплоидия) – у животных и человека встречается очень редко.  (так как этот тип мутаций нарушает функционирование хромосомного механизма определения пола; если количество половых хромосом превышает две, у организмов отмечаются нарушения в развитии и они или погибают, или остаются неспособны к размножению). У растений таких ограничений нет, так как у них нет половых хромосом.



 

ГРУППА 405 ХИМИЯ,30, 31 

ТЕМА:Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы.

ТЕМА:Степень электролитической диссоциации.

Электролитическая диссоциация

Понятие электролитов впервые ввел М. Фарадей в первой половине XIX века. Согласно его определению:

Определение

Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.

Опустим в стакан с водой графитовые стержни, присоединенные к источнику тока и связанные цепью с электрической лампой. При включении рубильника никаких видимых изменений не происходит. Это означает, что вода не проводит электрический ток, то есть не является электролитом. Внесем в стакан с водой поваренную соль – хлорид натрия, . Лампа ярко вспыхивает.Наличие проводимости свидетельствует о появлении в растворе заряженных частиц. Направленное движение частиц наблюдается также в расплавах солей (например, электролиз расплава хлорида натрия позволяет получать металлический натрий, выделяющийся на катоде и газообразный хлор на аноде).

Определение

Атомы и группы атомов, несущие электрический заряд, называют ионами. Положительно заряженные ионы называют катионами, отрицательно заряженные ионы - анионами. 

Проведя дополнительный опыт, можно убедиться, что сухая поваренная соль  не проводит электрический ток. Таким образом, можно сделать вывод, что свободные ионы появляются в расплаве и при растворении соли в воде.

Рассмотрим на атомарном уровне, что происходит с кристаллом поваренной соли при попадании его в воду. Соль – вещество с ионной кристаллической решеткой, в узлах которой расположены катионы натрия и анионы хлора. Они удерживаются друг около друга благодаря силам электростатического притяжения.

Молекула воды представляет собой диполь, так как на атомах водорода локализованы частичные положительные заряды, на на атоме кислорода – отрицательный.

В молекуле воды атомные орбитали кислорода находятся в -гибридизации (то есть имеет форму тетраэдра), причем две недостающие орбитали из четырех  образованы двумя парами электронов (электронная конфигурация внешнего уровня кислорода ). Поэтому между связями в молекуле воды угол составляет примерно 104 градуса, то есть молекула имеет не линейную, а угловую форму. Благодаря этому молекула воды является диполем, и  ее дипольный момент не равен нулю.

Для объяснения свойств водных растворов электролитов С. Аррениус в 1887 году предложил теорию электролитической диссоциации. Эта теория объясняла, почему растворы некоторых веществ проводят электрический ток, но не отвечала на вопрос, почему одни вещества являются электролитами, а другие - нет. Более подробно особенности поведения веществ в растворах описал Д.И. Менделеев, который экспериментально доказал, что при растворении электролитов происходит химическое взаимодействие между молекулами растворенного вещества и молекулами растворителя. Сущность процесса электролитической диссоциации было объяснено на основании природы химической ионной связи.

Согласно теории Д.И. Менделеева, электролитическая диссоциация молекул электролитов протекает в три стадии. Рассмотрим эти стадии на примере поваренной соли NaCl.

1. При попадании в воду, молекулы воды окружают кристаллы поваренной соли, притягиваясь к катионам натрия своими отрицательно заряженными концами, а к анионам хлора - положительно заряженными. Эта стадия называется ассоциация.

2. За счет электростатического взаимодействия, молекулы  воды "растаскивают" молекулу электролита, связь между ионами в кристалле ослабевает и разрывается, то есть происходит непосредственно диссоциация (распад) молекул.

3. Диполи воды полностью окружают образовавшиеся при распаде ионы, катионы и анионы, образуя гидратную оболочку. Гидратированные ионы переходят в раствор. 

В неводных растворах  в качестве диполей может выступать не вода, а другой полярный растворитель, например, этанол. В таком случае ионы окружены молекулами растворителя (образуют сольватную оболочку) и называются сольватированными.

Определение

Ионы в водном растворе окружены молекулами воды, то есть имеют гидратную оболочку, и называются гидратированными.

Таким образом, описанный выше процесс можно описать уравнением:

где  - гидратированные ионы,т.е. ионы, окруженные молекулами воды.

В большинстве случаев этот процесс записывают упрощенно, не указывая гидратированное состояние ионов:

Определение

Процесс распада вещества на ионы при растворении в воде или расплавлении называют электролитической диссоциацией.

Электролитическая диссоциация состоит из двух одновременно протекающих обратных процессов: из диссоциации (распад молекул на ионы) и ассоциации (процесс образования молекул из ионов). Поэтому в уравнении электролитической диссоциации всегда ставят знак 

В водных растворах диссоциации подвержены кислоты, сильные основания и растворимые соли: 

 

 

При диссоциации происходит резкое увеличение числа частиц в растворе – это отличает растворы электролитов от растворов неэлектролитов. Именно поэтому растворы солей замерзают при более низкой температуре, чем растворы неэлектролитов. 

Особенно сильно гидратирован ион водорода . Он находится в водных растворах в виде иона гидроксония  или более сложных ионов.

Основные положения Теории электролитической диссоциации 

Согласно теории электролитической диссоциации С. Аррениуса и Д. И. Менделеева можно сформулировать основные положения теории электролитической диссоциации (ТЭД):

  • При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).
  • Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией).
Определение

Степень электролитической диссоциации  показывает отношение числа молекул, распавшихся на ионы общ к общему числу молекул, введенных в раствордисс и зависит от природы электролита и растворителя, температуры и концентрации:

диссобщ

Основываясь на теории электролитической диссоциации можно дать определения важнейшим классам неорганических соединений

НазваниеОпределениеУравнение диссоциации
ОксидыНеэлектролиты, состоят из атомов элемента и кислородаНе диссоциируют в водных растворах
 КислотыЭлектролиты, при диссоциации образуют катионы водорода

 

 ОснованияЭлектролиты, при диссоциации образуют гидроксид-анионы.Растворимые в воде основания называют щелочами

 

 СолиЭлектролиты, при диссоциации образуют катионы металла и анионы кислотного остатка

 

ТЕМА:Степень электролитической диссоциации.

Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы.Степень электролитической диссоциации.



еорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация – это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

 

CH3COOH⇄H++CH3COO-.

 

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α – отношение числа молекул, распавшихся на ионы, к общему числу молекул:

 

α=v´(x)/v(x).

 

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты.

Сильные электролиты – это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы – это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты – степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

 

Сильные электролиты

Слабые электролиты

Практически все соли и кислоты: HBr, KOH, NaOH, Ca(OH)2, HNO3, HClO4.

Большинство кислот и оснований: H2S. H2CO3. Al(OH)3, NH4OH.

 

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

 

КАЖУЩАЯСЯ СТЕПЕНЬ ДИССОЦИАЦИИ.

Теория электролитической диссоциации

 

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

 

AK ⇄ A- + K+.

 

И степень диссоциации можно выразить так:

 

Теория электролитической диссоциации

 

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Причины и механизм диссоциации электролитов объясняются химической теорией раствора Д. И. Менделеева и природой химической связи. Как известно, электролитами являются вещества с ионной или ковалентной сильно полярной связямиРастворители, в которых происходит диссоциация, состоят из полярных молекул. Например, вода — полярный растворитель. Диссоциация электролитов с ионной и полярной связями протекает различно. Рассмотрим механизм диссоциации электролитов в водных растворах. 

I. Механизм диссоциации электролитов с ионной связью.

При растворении в воде ионных соединений, например хлорида натрия NaCl, дипольные молекулы воды ориентируются вокруг ионов натрия и хлорид-ионов. При этом положительные полюсы молекул воды притягиваются к хлорид-ионам Сl—, отрицательные полюсы — к положительным ионам Na+ .
В результате этого взаимодействия между молекулами растворителя и ионами электролита притяжение между ионами в кристаллической решетке вещества ослабевает. Кристаллическая решетка разрушается, и ионы переходят в раствор. Эти ионы в водном растворе находятся не в свободном состоянии, а связаны с молекулами воды, т. е. являются гидратированными ионами.

II. Механизм диссоциации электролитов, которые состоят из полярных молекул

При растворении в воде веществ с полярной ковалентной связью происходит взаимодействие дипольных молекул электролита с дипольными молекулами воды. Например, при растворении в воде хлороводорода происходит взаимодействие молекул НСl с молекулами Н2O.

Для простоты в химических уравнениях ионы изображают без молекул воды: Н+ , Ag+, Mg2 +, F—, SO42- и т. д.
Источник: https://himya.ru/elektroliticheskaya-dissociaciya.html




ГРУППА 308 БИОЛОГИЯ, 27,28

ТЕМА:Бионика как одно из направлений биологии и кибернетики

 Бионика   —  одно  из  направлений  биологии  и  кибернетики,  изучающее  особенности  строения и  жизнедеятельности  организмов  в  целях  создания  более  совершенных  технических  систем  или  устройств,  характеристики  которых приближаются к характеристикам живых систем.

Датой рождения бионики считается  13 сентября  1960 г. 

В этот день открылся первый  международный  симпозиум  на  тему  «Живые  прототипы искусственных систем  — ключ к новой технике». 

Но и до официального  признания  бионика  как таковая  была  известна.  Изобретатели уже давно обращали внимание на различные явления природы,  закономерности  ее  развития  и  находили  правильные  решения  технических  задач. 

В  процессе последовательного,  беспощадного  естественного  отбора  природа тысячелетиями совершенствовала  свои  системы,  оттачивала  отдельные  органы животных. 

В жестокой борьбе за существование выживали и давали потомство только самые совершенные формы организмов. В итоге столь  продолжительной  эволюции  природа  создала  на  Земле  гигантскую  сокровищницу,  в  которой  не  счесть  изумительных  образцов «живых инженерных систем», функционирующих очень точно,  надежно  и  экономично,  отличающихся  поразительной  целесообразностью  и  гармоничностью действий,  способностью  реагировать на тончайшие изменения многочисленных факторов внешней  среды,  запоминать  и  учитывать  эти  изменения,  отвечать  на них многообразными приспособительными реакциями. У природы для  этого  было  много  времени,  а  человек,  создающий  современные машины, должен решать технические задачи за короткий срок,за  десятилетия,  даже  годы.

Многие  «изобретения»  природы  еще  в глубокой  древности  помогали решать ряд технических задач. Так, арабские врачи уже много сотен  лет  назад,  проводя  глазные  хирургические  операции,  получили  представление  о  преломлении  световых  лучей  при  переходе из  одной  прозрачной  среды  в  другую.  Изучение  хрусталика  глаза натолкнуло  врачей  древности  на  мысль  об  использовании  линз,изготовленных  из  хрусталя  или  стекла,  для  увеличения  изображения.

 

В  области  физики  изучение  многих  основных  принципов  учения об электричестве  было начато с  исследования так называемого животного электричества.  В  частности,  знаменитые опыты итальянского физиолога XVIII  в. Луиджи  Гальвани  с лапкой лягушки привели в конечном итоге  к созданию гальванических элементов —химических источников электрической энергии.

Луиджи Гальвани (1737-1798)

Еще  в  годы  Первой  мировой  войны  британский  флот  получилна  вооружение  гидрофоны  —  приборы  для  обнаружения  германских подводных лодок по шуму их винтов в воде.  Конструкция оказалась неудачной.  Во время хода судна гидрофоны не воспринимали  других  звуков,  так  как  все  заглушалось  шумом  машины  собственного корабля.  На помощь пришли зоологи. Они напомнили,что тюлени прекрасно слышат в  воде  при любой скорости,  и предложили придать гидрофонам форму ушной раковины тюленя. С тех пор  англичане  стали  более  успешно  бороться  с германскими  под­водными  лодками.

Стремление ученых понять,в  чем  природа  совершеннее,  умнее,  экономнее  современной  техники,  их  попытки  найти  и  систематизировать  новые  методы  для коренного  усовершенствования  существующих  и  создания  принципиально новых машин, приборов, строительных конструкций и технологических  процессов  и  породили  новое  научное  направление,  получившее  название  бионика.

Формы живого в природе и их промышленные аналоги.

Одной  из  основных  задач,  решаемых  бионикой,  является  исследование  принципов,  позволяющих достичь  высокой  надежности  биологических систем,  моделирование  компенсаторных функций  организмов и  их способностей  к адаптации.

Примером  высокой  надежности приспособительных механизмов у некоторых организмов  являются  особые  оболочки для  защиты  от действия  окружающей среды и  возможного нападения. 

ГРУППА 403 БИОЛОГИЯ,63

  Взаимоотношения организма и среды.

Определение
Экология — это наука о взаимоотношениях организмов между собой и с окружающей неживой природой.

Термин «экология» ввел в научный обиход в 1866 г. немецкий зоолог и эволюционист, последователь Ч. Дарвина Э. Геккель.

Задачи экологии:

Изучение пространственного размещения и адаптационных возможностей живых организмов, их роль в круговороте веществ (экология особей, или аутэкология).
Изучение динамики численности  и структуры популяций (популяционная экология).
Изучение состава и пространственной структуры сообществ, круговорота веществ и энергии в биосистемах (экология сообществ, или экосистемная экология).
Изучение взаимодействия с окружающей средой отдельных таксономических групп организмов (экология растений, экология животных, экология микроорганизмов и т. д.).
Изучение различных экосистем: водных (гидробиология), лесных (лесоведение).
Реконструкция и изучение эволюции древних сообществ (палеоэкология).
Экология тесно связана с другими науками: физиологией, генетикой, физикой, географией и биогеографией, геологией и эволюционной теорией.

В экологических расчетах применяется методы математического и компьютерного моделирования, метод статистического анализа данных.

экологические факторы
Экологические факторы — компоненты окружающей среды, влияющие на живой организм.

Существование определенного вида зависит от сочетания множества различных факторов. Причем для каждого вида значение отдельных факторов, а также их комбинации весьма специфичны.

Виды экологических факторов:

Абиотические факторы — факторы неживой природы, прямо или косвенно действующие на организм.
Примеры: рельеф, температура и влажность воздуха, освещенность, течение и ветер.
Биотические факторы — факторы живой природы, влияющие на организм.
Примеры: микроорганизмы, животные и растения.
Антропогенные факторы — факторы, связанные с деятельностью человека.
Примеры: строительство дорог, распашка земель, промышленность и транспорт. 
Абиотические факторы
климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха;
Развернуть
Развернуть
ЭКОЛОГИЧЕСКИЕ ГРУППЫ РАСТЕНИЙ
По отношению к водному обмену различают следующие экологические группы растений:

гидратофиты — растения, постоянно живущие в воде;

гидрофиты — растения, частично погруженные в воду;

гелофиты — болотные растения;

гигрофиты — наземные растения, обитающие в чрезмерно увлажненных местах;

мезофиты — растения, предпочитающие умеренное увлажнение;

ксерофиты — растения, приспособленные к постоянном недостатку влаги (в том числе суккуленты --растения, накапливающие воду в тканях своего тела (например, толстянковые и кактусы);

склерофиты — засухоустойчивые растения с жесткими, кожистыми листьями и стеблями.

эдафические (почвенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы; 
ЭКОЛОГИЧЕСКИЕ ГРУППЫ РАСТЕНИЙ
По отношению к плодородию почвы различают следующие экологические группы растений:

олиготрофы — растения бедных, малоплодородных почв (сосна обыкновенная);

мезотрофы — растения с умеренной потребностью в питательных веществах (большинство лесных растений умеренных широт);

эвтрофы — растения, требующие большого количества питательных веществ в почве (дуб, лещина, сныть).

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона;
химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность;
физические: шум, магнитные поля, теплопроводность и теплоемкость, радиоактивность, интенсивность солнечного излучения.
ЭКОЛОГИЧЕСКИЕ ГРУППЫ РАСТЕНИЙ
Все растения по отношению к свету можно разделить на три группы: гелиофиты, сциофиты, факультативные гелиофиты.

Гелиофиты — светолюбивые растения (степные и луговые злаки, растения тундр, ранневесенние растения, большинство культурных растений открытого грунта, многие сорняки).

Сциофиты — тенелюбивые растения (лесные травы).

Факультативные гелиофиты — теневыносливые растения, способны развиваться как при очень большом, так и при малом количестве света (ель обыкновенная, клен остролистный, граб обыкновенный, лещина, боярышник, земляника, герань полевая, многие комнатные растения).

Сочетание различных абиотических факторов определяет распространение видов организмов по разным областям земного шара. Определенный биологический вид встречается не повсеместно, а в районах, где имеются необходимые для его существования условия. 

Однако существуют виды-космополиты, занимающие обширный ареал обитания. Например, двустворчатый моллюск мидия живет в морях и океанах обоих полушарий от полярных областей до экватора. Многие  из космополитов являются синантропными видами, т.е. обитают рядом с человеком. Примеры: комнатная муха, серая крыса, конопля и подорожник. К космополитам относятся и большинство паразитов человека: дизентерийная амеба, детская острица, аскарида, вши.

БИОТИЧЕСКИЕ ФАКТОРЫ
фитогенные — влияние растений;
микогенные — влияние грибов;
зоогенные — влияние животных;
микробиогенные — влияние микроорганизмов.
Биотические факторы разделяются на антагонистические (отрицательно влияющие на организм, например хищничество, паразитизм и конкуренция) и симбиотические (положительно влияющие на организм, например комменсализм и мутуализм).

АНТРОПОГЕННЫЕ ФАКТОРЫ
Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете выделяют в особую силу.

физические: использование атомной энергии, перемещение в поездах и самолетах, влияние шума и вибрации;
химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта;
биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания;
социальные — связанные с отношениями людей и жизнью в обществе: взаимодействие с домашними животными, синантропными видами (мухи, крысы и т. п.), использование цирковых и сельскохозяйственных животных.
Основными способами антропогенного влияния являются: завоз растений и животных, сокращение ареалов и уничтожение видов, непосредственное воздействие на растительный покров, распашка земель, вырубка и выжигание лесов, выпас домашних животных, выкашивание, осушение, орошение и обводнение, загрязнение атмосферы, создание мусорных свалок и пустырей, создание культурных фитоценозов. К этому следует добавить многообразные формы растениеводческой и животноводческой деятельности, мероприятия по защите растений, охране редких и экзотических видов, промысел животных, их акклиматизацию и т. п.

Влияние антропогенного фактора с момента появления человека на Земле постоянно усиливалось.

ЭКОЛОГИЧЕСКИЙ ОПТИМУМ ВИДА
Можно установить общий характер воздействия экологических факторов на живой организм. Любой организм имеет специфический комплекс приспособлений к факторам среды и благополучно существует лишь в определенных границах их изменяемости.

Экологический оптимум — значение одного или нескольких экологических факторов, наиболее благоприятных для существования данного вида или сообщества.

Развернуть
 
БИОЦЕНОТИЧЕСКИЙ ОПТИМУМ
Биоценотический оптимум — условия среды, способствующие развитию максимально устойчивого биогеоценоза.

Условия экологического оптимума не всегда соответствуют биоценотическому оптимуму. Так, Festuca sulcata лучшие условия для своего развития может найти (при отсутствии конкуренции) в условиях более влажных, чем те, при которых она создает устойчивые сообщества.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности данного вида.

Отклонения от оптимума определяют зоны угнетения (зоны пессимума). Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организмы.

Критические точки — минимально и максимально переносимые значения фактора, за которыми организм гибнет.

Область толерантности — диапазон значений экологического фактора, при котором возможно существование организма.

Для каждого организма характерны свои максимумы, оптимумы и минимумы экологических факторов. Например, комнатная муха выдерживает колебание температуры от 7 до 50 °С, а человеческая аскарида живет только при температуре тела человека. 

ЭКОЛОГИЧЕСКАЯ НИША
Экологическая ниша — совокупность факторов среды (абиотических и биотических), которые необходимы для существования определенного вида.

Экологическая ниша характеризует образ жизни организма, условия его обитания и питания. В отличие от ниши понятие местообитание обозначает территорию, где живет организм, т. е. его «адрес». Например, травоядные обитатели степей — корова и кенгуру — занимают одну экологическую нишу, но имеют различные места обитания. Наоборот, обитатели леса — белка и лось, относящиеся также к травоядным животным — занимают разные экологические ниши.

Экологическая ниша всегда определяет распространение организма и его роль в сообществе.

В одном сообществе два вида не могут занимать одну и ту же экологическую нишу.

ЛИМИТИРУЮЩИЙ ФАКТОР
Лимитирующий (ограничивающий) фактор 
— любой фактор, который ограничивает процесс развития или существования организма, вида или сообщества.

Например,  если в почве недостает какого-то определенного микроэлемента, это вызывает снижение урожайности растений. Из-за отсутствия пищи гибнут насекомые, которые питались этими растениями. Последнее отражается на выживаемости хищников-энтомофагов: других насекомых, птиц и земноводных.

Ограничивающие факторы определяют ареал расселения каждого вида. Например, распространение многих видов животных на север сдерживается нехваткой тепла и света, на юг — дефицитом влаги. 

Закон толерантности Шелфорда

Лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия.

Закон толерантности можно сформулировать проще: плохо как недокормить, так и перекормить растение либо животное.

Из этого закона вытекает следствие: любой избыток вещества или энергии является загрязняющим среду компонентом. Например, в засушливых областях избыток воды вреден, и вода может рассматриваться как загрязнитель.

Итак, для каждого вида существуют пределы значений жизненно необходимых факторов абиотической среды, которые ограничивают зону его толерантности (устойчивости). Живой организм может существовать в определенном интервале значений факторов. Чем шире этот интервал, тем выше устойчивость организма. Закон толерантности является одним из основополагающих в современной экологии.

ЗАКОНОМЕРНОСТИ ДЕЙСТВИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ
ЗАКОН ОПТИМУМА
Закон оптимума


Любой экологический фактор имеет определенные пределы положительного влияния на живые организмы.

Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.

Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий.

Стенобионты — узкоспециализированные виды, которые могут жить только в относительно постоянных условиях. Например, глубоководные рыбы, иглокожие, ракообразные не переносят колебания температуры даже в пределах 2–3 °C. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами.

Эврибионты — виды с большим диапазоном выносливости (экологически пластичные виды). Например, виды-космополиты.

Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.

ЗАКОН МИНИМУМА ЛИБИХА
Закон минимума Либиха, или закон ограничивающего фактора

Наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. 

Именно от этого минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки — зимняя температура; а для хариуса — концентрация растворенного в воде кислорода.

Этот закон учитывается в практике сельского хозяйства. Немецкий химик Юстус фон Либих установил, что продуктивность культурных растений в первую очередь зависит от того питательного вещества (минерального элемента), которое представлено в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция — 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

По имени ученого названо образное представление этого закона — так называемая «бочка Либиха» (см. рис.). Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке и длина остальных досок уже не имеет значения.

 
ВЗАИМОДЕЙСТВИЕ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ

Изменение интенсивности одного экологического фактора может сузить предел выносливости организма к другому фактору или, наоборот, увеличить его.
В природной среде действие факторов на организм может суммироваться, взаимно усиливаться или компенсироваться.

Суммация факторов. Пример: высокая радиоактивность среды и одновременное содержание нитратного азота в питьевой воде и пище в несколько раз увеличивают угрозу здоровью человека, чем каждый из этих факторов в отдельности.

Взаимное усиление (явление синергизма). Следствием этого является снижение жизнеспособности организма. Повышенная влажность значительно снижает устойчивость организма к перенесению высоких температур. Уменьшение содержания азота в почве приводит к снижению засухоустойчивости злаков. 

Компенсация. Пример: утки, оставшиеся зимовать в умеренных широтах, недостаток тепла возмещают обильным питанием; бедность почвы во влажном экваториальном лесу компенсируется быстрым и эффективным круговоротом веществ; в местах, где много стронция, моллюски могут заменять в своих раковинах кальций стронцием. Оптимальная температура повышает выносливость к недостатку влаги и пищи. 
В то же время ни один из необходимых организму факторов не может быть полностью заменен другим. Например, недостаток влаги замедляет процесс фотосинтеза даже при оптимальной освещенности и концентрации  в атмосфере; недостаток тепла нельзя заменить обилием света, а минеральные элементы, необходимые для питания растений, — водой. Поэтому если значение хотя бы одного из необходимых факторов выходит за пределы диапазона толерантности, то существование организма становится невозможным (см. закон Либиха).

Интенсивность воздействия факторов среды находится в прямой зависимости от продолжительности этого воздействия. Длительное действие высоких или низких температур губительно для многих растений, тогда как кратковременные перепады растения переносят нормально.
Таким образом, факторы среды действуют на организмы совместно и одновременно. Присутствие и процветание организмов в том или ином местообитании зависят от целого комплекса условий.