пятница, 2 апреля 2021 г.

 02/04/21 г. 303, 201, 208

ГРУППА 303 ХИМИЯ

ТЕМА: Классификация реакций в органической химии. 

             Реакции присоединения (гидрирования, галогенирования, гидрогалогенирования,  гидратации).

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция элиминирования (отщепления)
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции конденсации и поликонденсации
  • Реакции разложения
  1. Реакции присоединения

    При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

    1. Гидрирование – присоединение молекулы водорода:

    hello_html_m69501835.png

    1. Галогенирование — присоединение молекулы галогена:hello_html_6946f0bc.png

    2. Гидрогалогенирование — присоединение молекулы галогенводорода:hello_html_ea3be81.png

    3. Гидратация — присоединение молекулы воды:hello_html_60da1059.png

    4. Полимеризация – образование высокомолекулярного соединения посредством многократного присоединения низкомолекулярного соединения, например: hello_html_m67f021ee.png


    5. ГРУППА 201

  2. ТЕМА:ПОЛИМЕРЫ. БИОЛОГИЧЕСКИЕ ФУНКЦИИ БЕЛКОВ.
  3.  

    Полимеры — что это такое?

    Полимеры — это материалы, состоящие из длинных повторяющихся цепочек молекул. Они обладают уникальными свойствами в зависимости от типа соединяемых молекул и от того, как они соединены. Некоторые из них гнутся и тянутся, например резина и полиэстер. Другие твердые и жесткие, как эпоксиды и органическое стекло.

    Термин «полимер» обычно используется для описания пластиков, которые являются синтетическими полимерами. Как бы то ни было, естественные полимеры также существуют: к примеру, резина и дерево — это естественные полимеры, состоящие из простого углеводорода, изопрена. Белки — тоже естественные полимеры, они состоят из аминокислот. Нуклеиновые кислоты (ДНК и РНК) — полимеры нуклеотидов — сложных молекул, состоящих из азотсодержащей основы, сахара и фосфорной кислоты.

    Кто до этого додумался?

    Отцом полимеров считается преподаватель органической химии из Швейцарской высшей технической школы Цюриха Герман Штаудингер.

    Герман Штаудингер

    Герман Штаудингер. Источник: Wikimedia

    Его исследования 1920-х гг. проложили путь для последующей работы, как с естественными, так и с синтетическими полимерами. Он ввел два термина, являющихся ключевыми для понимания полимеров: полимеризация и макромолекула. В 1953 г. Штаудингер получил заслуженную Нобелевскую премию «за его открытия в поле макромолекулярной химии».

    Полимеризация — метод создания синтетических полимеров путем комбинирования более маленьких молекул, мономеров, в цепочку, скрепляемую ковалентными связями. Различные химические реакции, например те, что вызваны теплом и давлением, изменяют химические связи, которые скрепляют мономеры. Процесс заставляет молекулы связываться в линейной, разветвленной или пространственной структуре, превращая их в полимеры. Эти цепочки мономеров также называют макромолекулами. Одна макромолекула может состоять из сотен тысяч мономеров.

    Виды полимеров

    Вид полимера зависит от его структуры. Из вышенаписанного мы понимаем, что таких видов должно быть три.

    Линейные полимеры. Это соединения, в которых мономеры химически инертны по отношению друг к другу и связаны лишь силами Ван-дер-Ваальса (силы межмолекулярного (и межатомного) взаимодействия с энергией 10–20 кДж/моль. — Прим. ред.). Термин «линейные» вовсе не обозначает прямолинейное расположение молекул относительно друг друга. Наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

    Разветвленные полимеры. Они образованы цепями с боковыми ответвлениями (число ответвлений и их длина различны). Разветвленные полимеры более прочны, чем линейные.

    Линейные и разветвленные полимеры размягчаются при нагревании и вновь затвердевают при охлаждении. Такое их свойство называется термопластичностью, а сами полимеры — термопластичными, или термопластами. Связи между молекулами в таких полимерах могут быть разорваны и соединены по новой. Это значит, что пластмассовые бутылки можно использовать для производства других полимерсодержащих вещей, от коврика до флисовых курток. Конечно, можно наделать еще бутылок. Все, что понадобится для переработки, — высокая температура. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др.

    Если же макромолекулы содержат реакционно-способные мономеры, то при нагревании они соединяются множеством поперечных связей, и полимер приобретает пространственную структуру. Такие полимеры называют термоактивными, или реактопластами.

    С одной стороны, реактопласты обладают положительными качествами: они более твердые и теплостойкие. С другой стороны, после разрушения связей между молекулами термоактивных полимеров ее не получится установить второй раз. Переработка в таком случае отпадает, а это очень нехорошо. Самые распространенные полимеры этой группы — полиэстер, винилэстер и эпоксиды.

    пластик, полимеры, переработка

    Источник: Pixabay.com

    Использование полимеров

    Отметим, что полимеры применяются почти во всех сферах современной человеческой жизни. Пакеты в магазине, пластиковые бутылки, текстильные волокна, телефоны, компьютеры, упаковки для еды, автозапчасти, игрушки — полимеры повсюду. В производстве наиболее часто используются полиэтилен и полипропилен. Их молекулы могут содержать от 10 тыс. до 200 тыс. мономеров.

    Будущее полимеров

    Исследователи экспериментируют с различными типами полимеров, нацеливаясь на развитие медицины и улучшение продуктов, которые мы уже используем. Например, укрепленные углеволокном полимерные соединения должны сделать автомобили легче (что означает снижение потребления топлива) и безопаснее.

    Полимеры также используются для развития голограмм. Ученые из Университета Пенсильвании создали голограмму на гибком полимерном материале, в который были включены золотые наностержни. Новое устройство может поддерживать несколько изображений вместо одного.

    «Это важный шаг, ведь теперь можно записывать несколько голографических изображений и менять их, просто растягивая полимер», — говорит ведущий автор исследования, профессор из Университета Пенсильвании Ритеш Агаруол.

    Искусственная кожа, сделанная из силикона (который, к слову, тоже полимер), может стать будущим в отрасли борьбы со старением. Кремы на основе полимеров должны помочь в подтягивании кожи, а значит, прощайте, морщины и мешки под глазами. Кроме того, искусственная кожа должна помочь людям с заболеваниями кожи, например с экземой, а также может быть использована для защиты от солнца.


  1. Биологические функции белков представлены в таблице.

    Функция

    Описание

    Примеры

    Транспортная

    Переносят вещества (малые молекулы) через клеточную мембрану, а также участвуют в их транспорте кровью и другими жидкостями по организму.

    Гемоглобин переносит кислород и углекислый газ, транскортин – транспортные белки, встроенные в мембраны клеток, участвуют в поступлении в клетку глюкозы, аминокислот.

    Двигательная

    Обеспечивают сокращение мышечных клеток многоклеточных животных, участвуют в движении жгутиков и ресничек

    Актин, миозин

    Структурная (строительная)

    Участвуют в образовании цитоскелета, органоидов клетки, межклеточного вещества. Обеспечивают прочность тканей и клеточных структур.

    Коллаген и эластин в хрящевой ткани, кератин волос и ногтей

    Сигнальная

    Передают информацию между клетками, тканями, органами

    Цитокины

    Ферментативная или каталитическая

    Большинство ферментов в живых организмах имеют белковое происхождение. Они являются катализаторами, ускоряя биохимические реакции

    Пепсин, каталаза, рибонуклеаза

    Регуляторная или гормональная

    Гормоны белкового происхождения контролируют и регулируют процессы метаболизма

    Инсулин, тиротропин

    Генно-регуляторная

    Регулируют функции нуклеиновых кислот при переносе генетической информации

    Гистоны регулируют репликацию и транскрипцию ДНК

    Энергетическая

    Используется как дополнительный источник энергии. При распаде 1 г высвобождается 17,6 кДж

    В качестве источника энергии белки используются организмом после углеводов и липидов.

    Защитная

    Специфичные белки – антитела – предохраняют организм, уничтожая чужеродные частицы. Особые белки участвуют в свертывании крови, останавливая кровотечения

    Иммуноглобулины, фибриноген, тромбин

    Запасающая

    Запасаются для питания клеток. Удерживают необходимые организму вещества

    Ферритин удерживает железо, казеин, глютен, альбумин запасаются в организме

    Рецепторная

    Удерживают различные регуляторы (гормоны, медиаторы) на поверхности или внутри клетки

    Глюкагоновый рецептор, протеинкиназа

    Белки могут оказывать отравляющее и обезвреживающее действие. Например, палочка ботулизма выделяет токсин белкового происхождения, а белок альбумин связывает тяжёлые металлы.

    ГРУППА 208

  2. ТЕМА:  Химия и здоровье человека. Лекарства. Проблемы, связанные с применением лекарственных препаратов.
  3. Химия и здоровье человека

    Перечень вопросов, рассматриваемых в теме: урок посвящён знакомству с фармакологической химией. Учащиеся узнают химические формулы самых распространённых лекарств, их назначение и противопоказания, научатся пользоваться инструкцией к лекарственным препаратам.

    Глоссарий

    Амоксициллин – антибиотик широкого спектра действия группы пенициллинов, оказывает сильное противовоспалительное действие.

    Аспирин – ацетилсалициловая кислота, лекарственный препарат, оказывающий жаропонижающее, противовоспалительное и обезболивающее действие.

    Анафилактический шок – быстро развивающаяся аллергическая реакция при попадании в организм аллергена, без оказания своевременной медицинской помощи может закончиться летальным исходом.

    Интерферон – иммуномодулирующий лекарственный препарат, оказывает противовирусный эффект.

    Парацетамол – параацетиламинофенол, лекарственное средство, оказывающее жаропонижающее и обезболивающее действие.

    Фармакологическая (фармацевтическая) химия – наука о лекарственных препаратах, методах их синтеза, качественного и количественного анализа, о химических свойствах лекарств и их превращениях в организме.

    Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

    Дополнительная литература:

    1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

    2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

    Открытые электронные ресурсы:

    • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

    ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

    История развития фармакологической химии

    Человек с древних времён для лечения использовал природные средства: отвары и настои трав, мёд, животный жир. Целенаправленным созданием лекарственных препаратов впервые занялись алхимики. В XVI веке сначала арабские алхимики, позже – европейские, пытались создать эликсир бессмертия. Родоначальником ятрохимии – направления химии, занимавшейся создание лекарственных средств, считается швейцарский врач Парацельс.

    Задачи фармакологической химии

    В настоящее время фармакологическая (фармацевтическая) химия занимается не только созданием лекарственных препаратов, но и проводит их качественный и количественный анализ, проверяет подлинность лекарственных средств, степень их очистки от примесей, изучает превращения препаратов в организме.

    Аспирин

    Синтез ацетилсалициловой кислоты, известной нам как аспирин, был выполнен впервые французским химиком Шарлем Фредериком Жераром в 1853 году. В 1899 году немецкий химик Феликс Хоффманн, работавший в лаборатории фирмы «Bayer» запатентовал лечебный препарат на основе ацетилсалициловой кислоты, которой получил название «аспирин».

    Аспирин применяют как жаропонижающее, противовоспалительное и обезболивающее средство. В малых дозах приём аспирина снижает риск сердечно-сосудистых заболеваний. Являясь слабой органической кислотой, аспирин снижает рН крови, разжижает её, снижая риск образования тромбов. Но любой лекарственный препарат кроме лечебного действия имеет побочные эффекты. Например, аспирин может вызывать желудочное кровотечение, так как кислота раздражает слизистую оболочку желудка.

    Парацетамол

    Другое популярное лекарство – парацетамол (эффералган, калпол). Название происходит от сокращения названия действующего вещества препарата – параацетиламинофенола. Парацетамол входит в состав многих комбинированных препаратов. Обладает жаропонижающим и обезболивающим эффектом. Побочные эффекты при бесконтрольном приёме парацетамола – нарушение функций печени и почек, анемия, аллергические реакции.

    Пенициллин и его производные

    Эпоха антибиотиков – мощных препаратов антибактериального действия началась с момента открытия в 1928 году Александром Флемнигом пенициллина. В настоящее время синтезировано большое число лекарственных препаратов на основе пенициллина. Один из них – амоксицилллин (аугментин, флемоксин), эффективный при лечении инфекционных заболеваний органов дыхания, желудочно-кишечного тракта, мочеполовой системы, кожи. Любые антибиотики следует принимать только по назначению врача и в строго указанной дозировке. Дело в том, что антибиотики уничтожают не только болезнетворные бактерии, но и полезную микрофлору кишечника. Происходит нарушение функции печени, почек, нервной системы, развивается гемолитическая анемия. В аптеках антибиотики продают только по рецепту врача. Часто на антибиотики возникает аллергическая реакция. Самое тяжёлое проявление аллергии – анафилактический шок, когда в ответ на попадание в организм аллергена быстро падает артериальное давление, происходит угнетение сознания, могут возникнуть судороги. Если вовремя не оказать медицинскую помощь при возникновении анафилактического шока, может наступить летальный исход.

    Интерферон

    Антибиотики эффективны при борьбе с болезнетворными бактериями, но абсолютно бесполезны и даже вредны при лечении вирусных заболеваний, таких как грипп. Для лечения вирусных заболеваний используют лекарственные препараты, усиливающие иммунитет человека. Одним из таких препаратов является интерферон (альфаферон, вэллферон). Интерферон – препарат белковой природы, выделяют из донорной крови. При его применении может возникнуть аллергия на чужеродный белок. Интерферон нельзя применять человеку, недавно перенесшему инфаркт миокарда, страдающему эпилепсией. Не рекомендуется применение интерферона беременным и кормящим женщинам, а также детям в возрасте до одного года.

    Активированный уголь

    Доступным и эффективным препаратом, назначаемым при отравлениях, кишечных инфекциях является активированный уголь. Это вещество является отличным сорбентом, то есть поглощает токсичные вещества, которые попали в кишечник. Активированный уголь является антацидом, то есть снижает кислотность. Но при одновременном приёме активированного угля с другими лекарственными препаратами он снижает их эффективность.

    «Всё есть яд и всё есть лекарство»

    Как Вы уже поняли, не существует абсолютно безопасных лекарств. Принимать лекарства следует только по назначению врача, предварительно внимательно изучив инструкцию к лекарственному препарату.

    Среди синтезированных лекарственных препаратов есть и такие, которые вызывают привыкание. Это может привести к возникновению тяжёлого заболевания – наркомании. Некоторые вещества даже при однократном приеме вызывают болезненную зависимость. К серьёзным необратимым нарушениям в работе организма приводит и частое употребление алкоголя, развивается болезнь – алкоголизм. Лечение наркомании и алкоголизма – длительный процесс, здесь недостаточно профессиональных знаний врача, необходимо желание выздороветь и сильная воля самого больного.

    Если вы хотите посвятить свою жизнь поиску средств спасения человека от смертельных заболеваний, то должны хорошо знать химию, чтобы продолжить обучение по специальности «Фармацевтика».

    ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

    1. Расчет максимально допустимого количества лекарственного препарата

    Условие задачи: Массовая доля парацетамола в одной таблетке аскофена массой 0,50 г составляет 40%. Максимальная разовая доза парацетамола для взрослого человека составляет 1 г. Какое максимальное количество таблеток аскофена можно принять взрослому, чтобы не допустить передозировки?

    Шаг первый: найдем, какая масса парацетамола содержится в одной таблетке аскофена. Для этого составим пропорцию:

    0,5 г составляет 100 %, а х г составляет 40 %.

    х = (0,5·40) : 100 = 0,2 (г).

    Шаг второй: найдём количество таблеток, в которых в сумме будет 1 г парацетамола.

    1 : 0,2 = 5 (таблеток)

    Ответ: 5.

    2. Расчёт необходимого количества упаковок лекарства

    Условие задачи: при назначении амоксициллина детям врач исходит из допустимой дозировки 65 мг на каждые 10 кг массы тела при однократном приёме. Для поддержания постоянной концентрации препарата в крови интервал между приёмами лекарственного средства должен составлять 8 часов. Сколько упаковок лекарственного препарата по 10 таблеток, содержащих каждая 250 мг амоксициллина, необходимо для лечения ребёнка массой 40 кг, если предполагается приём таблеток в течение 5 дней?

    Шаг первый: найдём дозировку для однократного приёма амоксициллина ребёнком с массой тела 40 кг.

    (65 : 10)·40= 260 мг.

    Эта дозировка соответствует 1 таблетке на разовый приём.

    Шаг второй: найдём, сколько таблеток в день должен принимать ребёнок, если интервал между приёмами лекарства составляет 8 часов.

    В сутках 24 часа. 24 : 8 = 3.

    Таблетки следует принимать три раза в день.

    Шаг третий: найдём общее количество таблеток, которое необходимо для курса лечения.

    3·5·1 = 15 (таблеток).

    Шаг четвёртый: Одна упаковка содержит 10 таблеток, то есть 15 : 10 = 1,5. Но упаковки продаются только целиком, то есть требуется купить на курс лечения 2 упаковки амоксициллина.

    Ответ: 2 упаковки.