вторник, 24 января 2023 г.

24.01.23г. ВТОРНИК 508,505,501

  24.01.23г. ВТОРНИК  508,505,501


РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 23.01.23г.-27.01.23г.

Пн.23.01: 306, 401, 401, 408                     

Вт. 24.01: 508, 505, 505, 501 

Ср. 25.01: 406, 505, 401, ----            

Чт. 26.01: 505, 501, 306, 508

Пт. 27.01: 401, 505,  ----, 501

    Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту:  rimma.lu@gmail.com      Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

Моя почта   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 508 БИОЛОГИЯ 23,24

ТЕМА 23,24: Вирусы. Генная и клеточная инженерия.

ВИРУСЫ.



Вирусы – неклеточная форма жизни


Вирус (от лат. virus — яд) — простейшая форма жизни, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК), заключенные в белковую оболочку (капсид) и способные инфицировать живые организмы.

Вирусы, за редким исключением, содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК (некоторые, например мимивирусы, имеют оба типа молекул).

Вирусы являются облигатными паразитами, так как не способны размножаться вне клетки. Вне клетки вирусные частицы ведут себя как химические вещества.

В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).


Рис. 1 Бактериофаг

 


Строение вирусов

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг нее оболочку — капсид. Примеров таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. 

Рис. 2 Вирус табачной мозаики

Сложно организованные вирусы имеют дополнительную оболочку — белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа и герпеса. Их наружная оболочка — это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду.

  

Рис. 3 Вирус гриппа

 

Распространение вирусов на Земле

Вирусы являются одной из самых распространенных форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов  частиц на миллилитр воды), их общая численность в океане — около 4×, а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования раз в несколько лет сокращает численность песцов в несколько раз).



Процесс вирусного инфицирования

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:
• проникновение в клетку
• перепрограммирование клетки
• персистенция (переход в неактивное состояние)
• создание новых вирусных компонентов
• созревание новых вирусных частиц и их выход из клетки

ПРОНИКНОВЕНИЕ В КЛЕТКУ

На этом этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) — в ее ядре.

ПЕРЕПРОГРАММИРОВАНИЕ КЛЕТКИ

При заражении вирусом в клетке активируются специальные механизмы противовирусной защиты. Зараженные клетки начинают синтезировать сигнальные молекулы — интерфероны, переводящие окружающие здоровые клетки в противовирусное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом или программируемой клеточной смерти. От способности вируса преодолевать системы противовирусной защиты напрямую зависит его выживание. Неудивительно, что многие вирусы (например, пикорнавирусы, флавивирусы) в ходе эволюции приобрели способность подавлять синтез интерферонов, апоптозную программу и т.д.

Кроме подавления противовирусной защиты вирусы стремятся создать в клетке максимально благоприятные условия для развития своего потомства.

СОЗДАНИЕ НОВЫХ ВИРУСНЫХ КОМПОНЕНТОВ

Размножение вирусов в самом общем случае предусматривает три процесса:

  1.  Транскрипция вирусного генома, то есть синтез вирусной м-РНК.
  2.  Ее трансляция, то есть синтез вирусных белков.
  3.  Репликация вирусного генома (в некоторых случаях, когда генетическая информация вируса закодирована в виде РНК, геномная РНК одновременно играет роль мРНК, и, следовательно, процесс транскрипции в паразитируемой клетке не происходит за ненадобностью).

У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация, напротив, активируется.

СОЗРЕВАНИЕ ВИРИОНОВ И ВЫХОД ИЗ КЛЕТКИ

В конце концов новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая ее разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.

ТЕМА 18: Генная и клеточная инженерия.

Биотехнология 

— это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объекты биотехнологии: многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.}, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы).  Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главные направления биотехнологии:

1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2)   применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3)   создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Задачи, методы и достижения биотехнологии. 

Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Генная (генетическая) инженерия —

раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки.

Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;

соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики (например, получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.).

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Клеточная инженерия 

совокупность методов, используемых для конструирования новых клеток. Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов. 

В основе  клеточной инженерии  лежит использование методов культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях. Это стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений — картофеля, пшеницы, ячменя, кукурузы, томатов и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии — соматической гибридизации, гаплоидии, клеточной селекции, преодоления нескрещиваемости в культуре и др.

Клонирование —

метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

 Выполните тест


 


ГРУППА 505 БИОЛОГИЯ 8,9,10

ТЕМА 8,9,10:Клетка – элементарная единица живого.

  • Клетка - элементарная единица структурной организации живой материи

    Клетка — элементарная единица структуры, функции и развития живой материи, которая характеризуется подразделением на ядро (или нуклеоид), цитоплазму и клеточную мембрану и обладает всем комплексом свойств живого: самовоспроизведением, саморазвитием, ростом, саморегуляцией, обменом веществ и энергии, раздражимостью, подвижностью, адаптацией и способностью противостоять энтропии.

    В состав многоклеточных организмов наряду с клетками входят симпласты, синцитии1 и межклеточное вещество. Однако ведущей формой структурной организации организмов, безусловно, является клетка, поскольку все перечисленные выше формы являются либо производными клетки (клеток), либо образуются в результате ее синтетической деятельности.

    Все клеточные формы органического мира, как указывалось выше, подразделяются на прокариот и эукариот; их сравнительная характеристика представлена в табл. 3.1 и на рис. 3.1.

    Таблица 3.1

    Сравнительная характеристика прокариот и эукариот

    Признаки и свойства

    Прокариоты

    Эукариоты

    Морфологически оформленное ядро

    Отсутствует

    Имеется

    Нуклеоид*

    И меется

    Отсутствует

    Форма молекулы ДНК

    Кольцевая

    Линейная

    Длина ДНК

    1 (условно)

    1000 (по отношению к прокариотам)

    Ядерные белки, связанные с ДНК

    Отсутствуют

    Имеются

    CRISPR-систсма в геноме**

    Имеется

    Отсутствует

    Плоидность

    генома

    Гаплоидный

    Диплоидный***

    Фенотипические проявления мутаций

    Каждая мутация реализуется в фенотипе

    Возможно сохранение мутантного рецессивного гена в гетерозиготном состоянии

    Микротрубочки и состоящие из них структуры (цеитриоли и др.)

    Отсутствуют

    Имеются

    Деление митозом

    Не характерно****

    Характерно

    Клеточная оболочка

    Плазмалемма + клеточная стенка (из пептидоглика- нов)

    Плазмалемма (+ клеточная стенка из целлюлозы у растений и хитина — у грибов)

    Сократительные белки (актин и миозин)

    Отсутствуют

    Имеются

    1 Симпласты и синцитии состоят из единой цитоплазмы с множеством ядер и покрыты клеточной мембраной. Симпласты образуются в результате слияния нескольких клеток (скелетное мышечное волокно), синцитии — в результате многократного митотического деления ядра без последующего разделения клеточного тела (часть сперматогенного эпителия).

    Признаки и свойства

    Прокариоты

    Эукариоты

    Жгутики

    Пить жгхтика построена из субъединиц белка флагсл- лина, образующих спираль

    Каждый жгутик содержит набор микротрубочек, собранных в группы

    Способ питания

    Голофитный (всасывание растворенных веществ; не способны к образованию псевдоподий)

    Голозойный (захват твердых частиц)

    Система внутриклеточных мембран

    Отсутствует (внутриклеточные потоки не упорядочены)

    Имеется (внутриклеточные потоки упорядочены)

    Рибосомы

    Имеются, масса небольшая

    Имеются

    Митохондрии и хлоропласты

    Отсутствуют

    Имеются

    Локализация биоэнергетических структур

    Клеточная оболочка

    Митохондрии

    Эволюционные

    перспективы

    Адаптивная эволюция (структурные перестройки невозможны)

    11рогрессивная (возможны глубокие структурные преобразования)

    * Находящаяся в центре прокариотической клетки структура, имеющая форму ромашки (центральная часть — остов — образован РНК, «лепестки» — около 50 петель ДНК).

    ** Особая генетическая конструкция, обеспечивающая иммунную защиту бактерий от вирусов и играющая определенную роль в рекомбинации и репарации ДНК.

    *** За исключением половых клеток и соматических клеток некоторых водорослей, грибов, растений (мхов).

    **** Прокариотические клетки размножаются простым поперечным делением.

    Общая схема строения прокариотической (я) и эукариотической (6) клеток

    Рис. 3.1. Общая схема строения прокариотической (я) и эукариотической (6) клеток:

    1 — плазматическая мембрана; 2 — клеточная стенка; 3 — жгутик; 4 — нуклеоид; 5 — рибосомы; 6 — ядро; 7 — мембранные органеллы

    Эукариоты в эволюционном плане оказались более перспективными по сравнению с прокариотами, так как:

    • • содержали больший объем генетической информации (двойной набор генов, множество копий отдельных генов);
    • • имели возможность накапливать в популяциях особей рецессивные мутантные гены в гетерозиготном состоянии и тем самым формировать резерв наследственной изменчивости (важное условие для эффективного протекания естественного отбора);
    • • могли осуществлять более тонкую и сложную регуляцию жизнедеятельности клеток (множество регуляторных генов, возможность использовать геном по частям);
    • • имели более совершенную пространственно-временную организацию метаболизма (благодаря компартментации внутреннего объема клетки, т.е. разделения пространства клетки мембранами на отсеки);
    • • обладали более пластичной клеточной оболочкой, способной к образованию разнообразных межклеточных соединений с различными функциями (контактов);
    • • имели высокосовершенный механизм воспроизведения генетически идентичных клеток (митоз), на базе которого при дальнейшей эволюции многоклеточных форм возник мейоз;
    • • обладали более эффективным механизмом извлечения и аккумулирования энергии (дыхание).
    ТЕМА 9:Цитоплазма. Мембранные органоиды клетки. 
    ТЕМА 10:Ядро. Прокариоты и эукариоты. 
    Лаб.работа №3 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом»
  • и. 


    Органоиды клетки

    Органоиды, или Органеллы, – постоянные специфические структуры цитоплазмы, выполняющие определённые функции, необходимые для поддержания жизнедеятельности клетки.

    Различают органоиды общего значения и специальные органоиды. Органоиды общего значения имеются во всех клетках и выполняют общие функции. Это – митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, цитоскелет и клеточный центр.

    Органоиды специального значения имеются только в клетках какого-то определённого типа и обеспечивают выполнение функций, присущих только этим клеткам.

    Мембранные органоиды:

    - ядро;

    - эндоплазматическая сеть;

    - аппарат Гольджи;

    - митохондрии;

    - лизосомы;

    - пластиды;

    - вакуоли.

    Эндоплазматическая сеть (ЭПС) открыта К. Портером в 1945 году. ЭПС или ЭПР (эндоплазматический ретикулум) – сеть канальцев и цистерн, сложенных мембранами. Различают гранулярную (шероховатую, зернистую) и гладкую (агранулярную) ЭПС.

    Гранулярная ЭПС содержит рибосомы на наружной стороне мембраны. Гладкая ЭПС не содержит рибосомы. В скелетных мышцах ЭПС носит название саркоплазматический ретикулум. ЭПС пронизывает всю клетку. Полость ЭПС сообщается с ядром и цитоплазматической мембраной.

    На рибосомах гранулярной ЭПС синтезируются секреторные белки, предназначенные для выведения из клетки, а также белки лизосом и внеклеточного матрикса.

    Наряду с секреторными белками на гранулярной ЭПС синтезируется большая часть полуинтегральных и интегральных белков. В гладеой ЭПС происходит также синтез мембраны липидов и осуществляется «сборка» компонентов мембраны.

    Кроме того, ЭПС, как считают, участвует в образовании пероксисом. Таким образом, гранулярная ЭПС служит «фабрикой» мембран для плазмалеммы, аппарата Гольджи, лизосом и других мембранных структур клетки.

    Агранулярная (гладкая) эндоплазматическая сеть представляет собой замкнутую сеть трубочек, канальцев, цистерн. На цитоплазматической поверхности гладкой ЭПС синтезируются жирные кислоты, большая часть липидов клетки, в том числе почти все липиды, необходимые для построения клеточных мембран. Поэтому гладкую ЭПС нередко называют «фабрикой липидов». Например, в клетках печени с мембранами гладкого эндоплазматического ретикулума связан фермент, обеспечивающий образование глюкозы из глюкозо-6-фосфата. Эта реакция имеет большое значение в поддержании уровня глюкозы в организме человека.

    В организме человека эндоплазматическая сеть особенно хорошо развита в клетках, синтезирующих гормоны, в клетках печени.

    Комплекс Гольджи (КГ, или аппарат Гольджи, – пластинчатый комплекс, расположен вблизи ядра, между ЭПС и плазмалеммой. Его структурно-функциональная единица – диктиосома – представляет собой стопку из 5–20 плоских одномембранных мешочков (цистерн), имеющих диаметр около 1 мкм, внутренние полости которых не сообщаются друг с другом. Количество таких мешочков в стопке обычно не превышает 5–20, а расстояние между ними составляет 20–25 нм.

    Белки, синтезированные на шероховатой эндоплазматической сети, попадают в аппарат Гольджи. Здесь осуществляется химическая модификация транспортируемых белков и их упаковка в специальные пузырьки.

    Таким образом, основными функциями комплекса Гольджи являются химическая модификация, накопление, сортировка, упаковка в секреторные пузырьки и транспорт по назначению белков и липидов, синтезированных в ЭПС.

    В комплексе Гольджи образуются лизосомы и синтезируются некоторые полисахариды.

    Лизосомальная система и пероксисомы

    Лизосомы – мембранные органеллы клеток животных и грибов, содержащие гидролитические ферменты и осуществляющие гидролитическое расщепление макромолекул (внутриклеточное пищеварение). Лизосомы представляют собой окружённые одинарной мембраной пузырьки, размеры которых в клетках животных колеблются от 0,2 до 0,5 мкм. В лизосомах содержится не менее 60 гидролитических ферментов, которые расщепляют все основные классы органических макромолекул.

    Все ферменты лизосом активны лишь в кислой среде при значениях pH, близких 5,0. Количество лизосом в разных клетках варьирует от единичных до нескольких сотен, как например, в фагоцитах.

    Завершающие этапы процесса внутриклеточного переваривания веществ, поглощённых клеткой, осуществляются в лизосомах.

    Лизосомы с помощью своих ферментов могут разрушать не только отдельные органеллы или клетки, но и целые органы (автолиз). Например, в процессе онтогенеза лягушки с помощью ферментов лизосом лизируются хвост и жабры головастика, а образующиеся при этом продукты распада используются для формирования органов взрослого животного.

    Митохондрии – крупные мембранные органоиды клетки, которые можно различить в световой микроскоп. Митохондрии присутствуют во всех эукариотических клетках человека, кроме эритроцитов.

    Они имеют обычно округлую, удлиненную или нитевидную формы. Количество митохондрий в клетке колеблется в широких пределах (от 1 до 100 тыс. и более) и зависит от потребностей клетки в энергии. Митохондрии имеют наружную и внутреннюю мембраны.

    На внутренней поверхности увеличенного фрагмента кристы видны небольшие выпуклости, обращенные в митохондриальный матрикс, которые содержат ферментные системы, обеспечивающие процессы дыхания. Наружная мембрана гладкая и по своему составу сходна с плазмалеммой.

    В матриксе содержатся кольцевая молекула митохондриальной ДНК (мтДНК), различные включения, а также молекулы мРНК, транспортной РНК (тРНК) и рибосомы, сходные по строению с рибосомами бактерий. Здесь же располагаются ферменты, превращающие пируват и жирные кислоты в ацетил-КоА, и ферменты реакций цикла Кребса.

    Митохондриальная ДНК имеет не линейную, как в хромосомах ядра, а кольцевую форму. Главная функция митохондрий – синтез АТФ, основного источника энергии для обеспечения жизнедеятельности клетки. Поэтому митохондрии называют «энергетическими станциями» клетки.

    Пластиды

    Пластиды – это органоиды клеток растений и некоторых фотосинтезирующих простейших. У большинства животных и грибов пластид нет.

    Пластиды делятся на несколько типов: хлоропласты, хромопласты, лейкопласты. Наиболее важный и известный – хлоропласт, содержащий зелёный пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

    Хлоропласты

    Хлоропласты

    Хромопласты

    Хромопласты

    Лейкопласты

    Лейкопласты

    Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

    Строение пластид

    Пластиды относятся к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.

    Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры, как тилакоиды, граны (стопки тилакоидов), ламелы – удлинённые тилакоиды, соединяющие соседние граны. Внутреннее содержимое пластид обычно называют стромой. В ней, помимо прочего, находятся крахмальные зёрна.

    Считается, что в процессе эволюции пластиды появились аналогично митохондриям – путём внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Часть генов, управляющая их функционированием, находится как раз в ядре.

    Ядро

    Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

    1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

    2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

    3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

    4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

    Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информационная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

    ОДНОМЕМБРАННЫЕ ОРГАНОИДЫ КЛЕТКИ

    ТЕМА10:Ядро. Прокариоты и эукариоты.

    Лаб.работа №3 "Строение растительной, животной, грибной и бактериальной клеток под микроскопом"

    Ядро. Прокариоты и эукариоты

    Строение ядра. В отличие от некоторых низших растений и простейших, клетки которых содержат несколько ядер, высшие животные, растения и грибы состоят из клеток, в которых находится одно ядро. Оно имеет форму шара с диаметром от 3 до 10 мкм (рис. 11, 8). Ядро окружено оболочкой, состоящей из двух мембран, каждая из которых подобна плазматической мембране. Через определенные интервалы обе мембраны сливаются друг с другом, образуя отверстия диаметром 70 нм — ядерные поры. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Размеры пор позволяют проникать из ядра в цитоплазму даже крупным молекулам РНК и частицам рибосом.

    В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать в ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. Кроме того, в состав хромосом входят различные белки. В период между делениями клетки хромосомы представляют собой длинные, очень тонкие нити, увидеть которые можно только в электронный микроскоп.

    Схема упаковки ДНК в хромосоме

    Рис. 17. Схема упаковки ДНК в хромосоме

    Средняя длина молекулы ДНК, составляющей основу каждой из 46 хромосом человека, около 5 см. Как же упакованы эти молекулы в ядре с диаметром всего около 5 мкм? Выделяют четыре уровня упаковки ДНК в хромосоме (рис. 17). На первом уровне двойная спираль ДНК диаметром 2 нм наматывается на белковый комплекс, содержащий 8 молекул гистонов — белков с повышенным содержанием положительно заряженных аминокислотных остатков лизина и аргинина. Образуется структура диаметром 11 нм, напоминающая бусы на нитке. Каждая «бусина» — нуклеосома содержит около 150 пар нуклеотидов. На втором уровне нуклеосомы сближаются с помощью гистона, отличающегося от тех, которые входят в состав нуклеосомы. Образуется фибрилла диаметром 30 нм. На третьем уровне упаковки формируются петли, содержащие от 20 ООО до 80 000 пар нуклеотидов ДНК. В «устье» каждой петли находятся белки, которые узнают определенные нуклеотидные последовательности и при этом имеют сродство друг к другу. Типичная хромосома млекопитающих может содержать до 2500 петель. Перед делением клетки молекулы ДНК удваиваются, петли укладываются в стопки, хромосома утолщается и становится видимой в световой микроскоп. На этом четвертом уровне упаковки каждая хромосома состоит из двух идентичных хроматид, каждая из которых содержит по одной молекуле ДНК. Участок соединения хроматид носит название центромеры. В целом «укорочение» ДНК достигает 104. Это соответствует тому, как если бы нитку длиной с Останкинскую башню (500 м) упаковали в спичечный коробок (5 см).

    В ядрах всегда присутствует одно или несколько ядрышек (рис. 11, 9). Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы.

    Ядро благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

    Ведущая роль ядра в наследственности. Итак, в ядре клеток заключены хромосомы, которые содержат ДНК — хранилище наследственной информации. Этим определяется ведущая роль клеточного ядра в наследственности. Данное важнейшее положение современной биологии не просто вытекает из логических рассуждений, оно доказано рядом точных опытов. Приведем один из них. В Средиземном море обитает несколько видов одноклеточных зеленых водорослей — ацетабулярий. Они состоят из тонких стебельков, на верхних концах которых располагаются шляпки. По форме шляпок различают виды ацетабулярий.

    В нижнем конце стебелька ацетабулярии находится ядро. У ацетабулярии одного вида искусственно удалили шляпку и ядро, а к стебельку подсадили ядро, извлеченное у ацетабулярии другого вида. Что же оказалось? Через некоторое время на водоросли с подсаженным ядром образовалась шляпка, характерная для того вида, которому принадлежало пересаженное ядро (рис. 18).

    Схема опыта с ацетобулярией

    Рис. 18. Схема опыта с ацетобулярией
    А и Б - разные виды ацетобулярий

    Хотя ядру принадлежит ведущая роль в явлениях наследственности, из этого, однако, не следует, что только ядро ответственно за передачу всех свойств из поколения в поколение. В цитоплазме также существуют органоиды (хлоропласты и митохондрии), содержащие ДНК и способные передавать наследственную информацию.

    Таким образом, именно в ядре каждой клетки содержится основная наследственная информация, необходимая для развития целого организма со всем разнообразием его свойств и признаков. Именно ядро играет центральную роль в явлениях наследственности.

    Как же обстоит дело у тех организмов, клетки которых не имеют ядер?

    Прокариоты и эукариоты. Все организмы, имеющие клеточное строение, делятся на две группы: доядерные (прокариоты) и ядерные (эукариоты).

    Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.

    Цитоплазма прокариот по сравнению с цитоплазмой эукариотических клеток значительно беднее по составу структур. Там находятся многочисленные, более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хлоропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.

    Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

    Сравнительная характеристика прокариот и эукариот

    Сравнительная характеристика прокариот и эукариот

    Сравнительная характеристика клеток эукариот. По строению различные эукариотические клетки сходны. Но наряду со сходством между клетками организмов различных царств живой природы имеются заметные отличия. Они касаются как структурных, так и биохимических особенностей.

    Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.

    В клетках представителей царства грибов клеточная стенка обычно состоит из хитина — полисахарида, из которого также построен наружный скелет членистоногих животных. Имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Запасным углеводом в клетках грибов является гликоген.

    В клетках животных отсутствует плотная клеточная стенка, нет пластид. Нет в животной клетке и центральной вакуоли. Центриоль характерна для клеточного центра животных клеток. Резервным углеводом в клетках животных также является гликоген.


    1. Покажите связь строения ядра с его функцией в клетке.
    2. Как можно доказать ведущую роль ядра в клетке?
    3. Имеются ли принципиальные различия между прокариотами и эукариотами? Поясните ответ.

    ТЕМА: Лаб.работа №3 «Строение растительной, животной, грибной и бактериальной клеток под микроскопом».



ГРУППА 501 БИОЛОГИЯ 17,18 

ТЕМА 17,18:Вирусы. Генная и клеточная инженерия.

ВИРУСЫ.



Вирусы – неклеточная форма жизни


Вирус (от лат. virus — яд) — простейшая форма жизни, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК), заключенные в белковую оболочку (капсид) и способные инфицировать живые организмы.

Вирусы, за редким исключением, содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК (некоторые, например мимивирусы, имеют оба типа молекул).

Вирусы являются облигатными паразитами, так как не способны размножаться вне клетки. Вне клетки вирусные частицы ведут себя как химические вещества.

В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).


Рис. 1 Бактериофаг

 


Строение вирусов

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг нее оболочку — капсид. Примеров таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. 

Рис. 2 Вирус табачной мозаики

Сложно организованные вирусы имеют дополнительную оболочку — белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа и герпеса. Их наружная оболочка — это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду.

  

Рис. 3 Вирус гриппа

 

Распространение вирусов на Земле

Вирусы являются одной из самых распространенных форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов  частиц на миллилитр воды), их общая численность в океане — около 4×, а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования раз в несколько лет сокращает численность песцов в несколько раз).



Процесс вирусного инфицирования

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:
• проникновение в клетку
• перепрограммирование клетки
• персистенция (переход в неактивное состояние)
• создание новых вирусных компонентов
• созревание новых вирусных частиц и их выход из клетки

ПРОНИКНОВЕНИЕ В КЛЕТКУ

На этом этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) — в ее ядре.

ПЕРЕПРОГРАММИРОВАНИЕ КЛЕТКИ

При заражении вирусом в клетке активируются специальные механизмы противовирусной защиты. Зараженные клетки начинают синтезировать сигнальные молекулы — интерфероны, переводящие окружающие здоровые клетки в противовирусное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом или программируемой клеточной смерти. От способности вируса преодолевать системы противовирусной защиты напрямую зависит его выживание. Неудивительно, что многие вирусы (например, пикорнавирусы, флавивирусы) в ходе эволюции приобрели способность подавлять синтез интерферонов, апоптозную программу и т.д.

Кроме подавления противовирусной защиты вирусы стремятся создать в клетке максимально благоприятные условия для развития своего потомства.

СОЗДАНИЕ НОВЫХ ВИРУСНЫХ КОМПОНЕНТОВ

Размножение вирусов в самом общем случае предусматривает три процесса:

  1.  Транскрипция вирусного генома, то есть синтез вирусной м-РНК.
  2.  Ее трансляция, то есть синтез вирусных белков.
  3.  Репликация вирусного генома (в некоторых случаях, когда генетическая информация вируса закодирована в виде РНК, геномная РНК одновременно играет роль мРНК, и, следовательно, процесс транскрипции в паразитируемой клетке не происходит за ненадобностью).

У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация, напротив, активируется.

СОЗРЕВАНИЕ ВИРИОНОВ И ВЫХОД ИЗ КЛЕТКИ

В конце концов новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая ее разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.

ТЕМА 18: Генная и клеточная инженерия.

Биотехнология 

— это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объекты биотехнологии: многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.}, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы).  Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главные направления биотехнологии:

1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2)   применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3)   создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Задачи, методы и достижения биотехнологии. 

Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Генная (генетическая) инженерия —

раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки.

Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;

соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики (например, получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.).

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Клеточная инженерия 

совокупность методов, используемых для конструирования новых клеток. Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов. 

В основе  клеточной инженерии  лежит использование методов культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях. Это стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений — картофеля, пшеницы, ячменя, кукурузы, томатов и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии — соматической гибридизации, гаплоидии, клеточной селекции, преодоления нескрещиваемости в культуре и др.

Клонирование —

метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

 Выполните тест