понедельник, 10 апреля 2023 г.

10.04.23 г.ПОНЕДЕЛЬНИК 506,403

   Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com     Тетрадь привезете, когда перейдем на очную форму обучения.)

Моя почта   rimma.lu@gmail.com      Жду ваши фотоотчеты! 

 СПРАВА НАХОДИТСЯ АРХИВ- ТАМ СМОТРИМ ДАТУ И ГРУППЫ

РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 10.04.23г. -14.04.23г.

 Пн. 10.04:  506,403 

Вт. 11.04::508,  505

Ср. 12 .04: 506, 505

 Чт.  13.04:  505, 508

Пт.   14.04:

ГРУППА 506 ХИМИЯ 25,26

ТЕМА: Вода. Растворы. Растворение. Вода как растворитель. 

Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы. 

А видел ли кто-нибудь из вас воду?

Вопрос показался вам нелепым? Но он относится к совершенно чистой воде, в которой нет никаких примесей. Если быть честным и точным в ответе, то придется сознаться, что такую воду ни я, ни вы пока не видели. Именно поэтому на стакане с водой после надписи «Н2О» стоит знак вопроса. Значит, в стакане не чистая вода, а что тогда?

В этой воде растворены газы: N2, O2, CO2, Ar, соли из почвы, катионы железа из водопроводных труб. Кроме того, в ней взвешены мельчайшие частицы пыли. Вот что мы называем ч и с т о й  в о д о й! Много ученых работает над решением трудной проблемы – получить абсолютно чистую воду. Но пока получить такую ультрачистую воду не удалось. Однако вы можете возразить, что есть дистиллированная вода. Кстати, что она собой представляет?

На самом деле мы получаем такую воду, когда стерилизуем банки перед консервированием. Переворачиваем банку вверх дном, помещаем ее над кипящей водой. На донышке банки появляются капельки, это и есть дистиллированная вода. Но как только мы перевернем банку, в нее заходят газы из воздуха, и снова в банке – раствор. Поэтому грамотные хозяйки стараются сразу после стерилизации заполнить банки нужным содержимым. Говорят, что продукты в этом случае будут храниться дольше. Возможно, они правы. Можете поэкспериментировать! Именно потому, что вода способна растворять в себе различные вещества, ученые не могут до сих пор получить идеально чистую воду в больших объемах. А она бы так пригодилась, например, в медицине для приготовления лекарств.

Кстати, находясь в стакане, вода «растворяет» стекло. Поэтому чем толще стекло, тем дольше прослужат стаканы. А что такое морская вода?

Это раствор, в котором содержится много веществ. Например, поваренная соль. А как можно выделить поваренную соль из морской воды?

Выпариванием.  Кстати, именно так поступали наши предки. В Онеге были солеварни, где из морской воды выпаривали соль. Соль продавали новгородским купцам, покупали своим невестам и женам дорогие украшения, шикарные ткани. Таких нарядов, как у поморок, не было даже у московских модниц. А все лишь благодаря знаниям свойств растворов! Итак, сегодня мы с вами говорим о растворах и растворимости. Запишем в тетради определение раствора.

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Раccмотрим схемы 1–2 и разберем, какие бывают растворы.



Какой из растворов вы предпочтете, готовя суп? Почему?

Определите, где разбавленный раствор, где концентрированный раствор медного купороса?

рис. 1  


 рис. 2

Если в определённом объёме раствора содержится мало растворённого вещества, то такой раствор называют разбавленным, если много – концентрированным.




                

Определите, где какой раствор?

Не следует смешивать понятия «насыщенный» и «концентрированный» раствор, «ненасыщенный» и «разбавленный» раствор.

Одни вещества хорошо растворяются в воде, другие мало, а третьи – не растворяются совсем. Посмотрите видео "РАСТВОРИМОСТЬ ТВЁРДЫХ ВЕЩЕСТВ В ВОДЕ"

Выполните задание в тетради: Распределите предложенные вещества - СO2 , H2, O2 , H2SO4, Уксус, NaCl,  Мел, Ржавчина, Растительное масло, Спирт в пустые столбики таблицы 1, используя свой жизненный опыт.

Таблица 1

Растворенное
вещество

Примеры веществ

Растворимые

Малорастворимые

Газ



Жидкость



Твердое вещество



Проверка

А можете ли вы сказать о растворимости FeSO4?

Как же быть?

Для того чтобы определить растворимость веществ в воде, мы будем пользоваться таблицей растворимости солей, кислот и оснований в воде. Она находится в приложениях к уроку.

В верхней строке таблицы – катионы, в левом столбце – анионы; ищем точку пересечения, смотрим букву – это и есть растворимость.

Н – нерастворимые вещества (меньше 0,01 г в 100 г воды),

М – малорастворимые (0,01–10 г в 100 г воды),

Р – растворимые (более 10 г в 100 г воды).

Определим растворимость солей: AgNO3, AgCl, CaSO4.

Растворимость увеличивается с ростом температуры (бывают исключения). Вы прекрасно знаете, что удобнее и быстрее растворять сахар в горячей, а не в холодной воде. Посмотрите  "Тепловые явления при растворении"

Попробуйте сами, пользуясь таблицей, определить растворимость веществ.

Задание. Определить растворимость следующих веществ: AgNO3, Fe(OH)2, Ag2SO3, Ca(OH)2, CaCO3, MgCO3, KOH.

ОПРЕДЕЛЕНИЯ по теме «Растворы»

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Насыщенный раствор – это раствор, в котором данное вещество при данной температуре больше не растворяется.

Ненасыщенный раствор - это раствор, в котором при данной температуре вещество ещё может растворяться.

Суспензией называют взвесь, в которой мелкие частицы твёрдого вещества равномерно распределены между молекулами воды.

Эмульсией называют взвесь, в которой мелкие капельки какой-либо жидкости распределены между молекулами другой жидкости.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества.

Концентрированные растворы - растворы с большим содержанием растворенного вещества.

ДОПОЛНИТЕЛЬНО:

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) - величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Растворимость веществ

По растворимости в воде все вещества делятся на три группы:

1) хорошо растворимые, 2) малорастворимые и 3) практически нерастворимые.

Последние называют также нерастворимыми веществами. Однако следует отметить, что

абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек

золота или серебра, то они в ничтожно малых количествах все же растворяются в воде. Как

известно, растворы серебра или золота в воде убивают микробов. Стекло, серебро, золото - это

примеры практически нерастворимых в воде веществ (твердые вещества). К ним следует также

отнести керосин, растительное масло (жидкие вещества), благородные газы (газообразные

вещества).

Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые

вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные

вещества).

Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить

сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества),

хлороводород, аммиак (газообразные вещества).

Из приведенных примеров следует, что растворимость прежде всего зависит от природы веществ.

Кроме того, она зависит также от температуры и давления. Сам процесс растворения обусловлен

взаимодействием частиц растворимого вещества и растворителя; это самопроизвольный процесс.

По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора,

различают растворы насыщенные, ненасыщенные и пересыщенные. С другой стороны, по

относительным количествам растворенного вещества и растворителя растворы подразделяют на

разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не

растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом,

называют насыщенным, а раствор, в котором еще можно растворить добавочное

количество данного вещества, — ненасыщенным.

Отношение массы вещества, образующего насыщенный раствор при данной температуре, к

массе растворителя называют растворимостью этого вещества, или коэффициентом

растворимости:


,

Зависимость растворимости веществ от температуры и природы растворителя.

Растворимость веществ существенно зависит от природы растворяемого вещества и

растворителя, температуры и давления. Причины различной растворимости веществ до конца не

выяснены, хотя их связывают с характером взаимодействия молекул растворителя и

растворенного вещества. Например, известно, что молекулярные кристаллы, структурными

единицами которых являются молекулы с ковалентным неполярным типом связи (сера и др.),

практически нерастворимы в воде, так как энергия разрушения кристаллической решетки

настолько велика, что не может быть компенсирована теплотой сольватации, которая очень мала.

Еще до обоснования теории растворов опытным путем было установлено правило, согласно

которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или

полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в

первую очередь в воде. И наоборот, растворимость кислорода в бензоле, например, на порядок

выше, чем в воде, так как молекулы О 2 и С 6 Н 6 неполярны.


Для подавляющего большинства твердых тел растворимость увеличивается с

повышением температуры.

Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись

кристаллы соли, то образуется пересыщенный раствор. Пересыщенным называют раствор, в

котором при данной температуре содержится большее количество растворенного вещества, чем в

насыщенном растворе. Пересыщенный раствор неустойчив, и при изменении условий (при

встряхивании или внесении в раствор затравки для кристаллизации) выпадает осадок, над

которым остается насыщенный раствор.

В отличие от твердых тел растворимость газов в воде с повышением температуры

уменьшается, что обусловлено непрочностью связи между молекулами растворенного вещества

и растворителя. Другой важной закономерностью, описывающей растворимость газов в жидкостях,

является закон Генри: Растворимость газа прямо пропорциональна его давлению над

жидкостью.


Дополнительно:
Прочитайте о растворимости различных вещест (см. приложения) и выполните задания тренажёра


ГРУППА 403 ХИМИЯ 22,23

ТЕМА: Химические свойства белков: горение, денатурация, гидролиз, цветные реакции.   Растворение белков в воде. Обнаружение белков в молоке и в мясном бульоне. Изучение свойств белков.Растворение белков в воде. Обнаружение белков в молоке и в мясном бульоне. Химические свойства глюкозы, сахарозы, крахмала. Изучение свойств белков.

 По химическому составу белки делятся на две группы:

а) простые белки – протеины, которые при гидролизе распадаются только на аминокислоты;

б) сложные белки или протеиды, образующие при гидролизе аминокислоты и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.) —  соединения белковых веществ с небелковыми.

1. Амфотерные свойства белков

Как и аминокислоты, белки являются амфотерными соединениями, так как молекула любого белка содержит на одном конце группу -NH2, а на другом конце – группу -СООН.

Так, при действии щелочей белок реагирует в форме аниона – соединяется с катионом щелочи:

При действии же кислот он выступает в форме катиона:

Если в молекуле белка преобладают карбоксильные группы, то он проявляет свойства кислот, если же преобладают аминогруппы, — свойства оснований.

Очень важным для жизнедеятельности живых организмов является буферное свойство белков, т.е. способность связывать как кислоты, так и основания, и поддерживать постоянное значение рН различных систем живого организма.

Белки обладают и специфическими физико-химическими свойствами.

2. Денатурация белка (необратимое осаждение, свертывание)

Денатурация – это разрушение вторичной и третичной структуры белка (полное или частичное)  и изменение его природных свойств с сохранением первичной структуры белка.

Сущность денатурации белка сводится к разрушению связей, обусловливающих вторичную и третичную структуры молекулы (водородных, солевых и других мостиков). А это приводит к дезориентации конфигурации белковой молекулы.

Денатурация бывает обратимой и необратимой.

Обратимая денатурация белка происходит при употреблении алкоголя, солёной пищи.

Необратимая денатурация может быть вызвана при действии таких реагентов, как концентрированные кислоты и щелочи, спирты, в результате воздействия высокой температуры, радиации, при отравлении организма солями тяжелых металлов (Hg2+, Pb2+, Си2+).

Например, яичный белок альбумин осаждается из раствора (свертывается) при варке яиц (при температуре 60-700С), теряя способность растворяться в воде.

Видеоопыт «Свертывание белков при нагревании»

Видеоопыт «Осаждение белков солями тяжелых металлов»

Видеоопыт «Осаждение белков спиртом»

3. Гидролиз белков

Гидролиз белков – это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.

Анализируя продукты гидролиза, можно установить количественный состав белков.

Переваривание белков в организме по своей сути представляет ферментативный гидролиз белковых молекул.

В лабораторных условиях и в промышленности проводится кислотный гидролиз.

В ходе гидролиза белков происходит разрушение пептидных связей. Гидролиз белка имеет ступенчатый характер:

4. Цветные (качественные) реакции на белки

Для белков известно несколько качественных реакций.

а) Ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца)

Белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), дают желтое окрашивание при действии концентрированной азотной кислоты.

Причина появления окраски – образование нитропроизводных ароматических аминокислот, например, фенилаланина:

Видеоопыт «Ксантопротеиновая реакция на белки»

б) Биуретовая реакция (на пептидные связи)

Все соединения, содержащие пептидную связь, дают фиолетовое окрашивание при действии на них солей меди (II) в щелочном растворе.

Причина появления окраски – образование комплексных соединений с координационным узлом:     

Видеоопыт «Биуретовая реакция белков»

Видеоопыт «Качественные реакции на белки: биуретовая и ксантопротеиновая»

в) Цистеиновая реакция (на остатки аминокислот, содержащих серу)

Причина появления окраски – образование черного осадка сульфида серебра (II) PbS.

Видеоопыт «Качественное определение азота в органических соединениях»

Белки

Белки входят в состав каждой клетки и составляют около 50% ее сухой массы. Они играют ключевую роль в обмене веществ, реализуют важнейшие биологические функции, лежащие в основе жизнедеятельности всех организмов.

Среди большого разнообразия функций, выполняемых белками, первостепенное значение имеют структурная, или пластическая, и каталитическая. Это универсальные функции, поскольку они присущи всем живым организмам.

Структурные белки формируют каркас внутриклеточных органелл и внеклеточных структур, а также участвуют в стабилизации клеточных мембран. Такие структурные белки, как коллаген и эластин составляют основу соединительной и костной тканей высших животных и человека. Структурными белками, в частности, являются кератины кожи, волос, ногтей, шерсти, когтей, рогов, копыт, перьев, клювов, а также фиброин шелка, паутины.

Каталитически активными белками являются ферменты. Они ускоряют химические реакции, обеспечивая тем самым необходимые скорости протекания обменных процессов в клетке.

Многие белки, присущие отдельным живым организмам, выполняют специфические функции, среди которых наиболее важными являются транспортная, регуляторная, защитная, рецепторная, сократительная, запасная и некоторые др.

Транспортные белки переносят различные молекулы и ионы внутри организма. Например: гемоглобин — кислород от легких к тканям; миоглобин — кислород внутри клеток; сывороточный альбумин с током крови — жирные кислоты, а также ионы некоторых металлов. Ту же функцию выполняют специфические белки, транспортирующие различные вещества через клеточные мембраны.

Регуляторные белки участвуют в регуляции обмена веществ как внутри клеток, так и в целом организме. Например, такие сложные процессы, как биосинтез белков и нуклеиновых кислот, протекают под строгим «контролем» множества регуляторных белков. Специфические белковые ингибиторы регулируют активность многих ферментов.

Защитные белки формируют защитную систему живых организмов. Например, иммуноглобулины (антитела) и интерфероны предохраняют организм от проникновения в его внутреннюю среду вирусов, бактерий, чужеродных соединений, клеток и тканей. Белки свертывающей системы крови — фибриноген, тромбин — препятствуют потере крови при повреждениях кровеносных сосудов.

Рецепторные белки воспринимают сигналы, поступающие из внешней среды, и воздействуют на внутриклеточные процессы. Например, белки-рецепторы, сосредоточенные на поверхности клеточных мембран, избирательно взаимодействуют с регуляторными молекулами (например, гормонами).

Рецепторными белками являются родопсин, участвующий в зрительном акте, вкусовой сладкочувствительный и обонятельный белки.

Сократительные белки способны преобразовывать свободную химическую энергию в механическую работу. Например, белки мышц миозин и актин обеспечивают мышечное сокращение.

Запасные белки представляют собой резервный материал, предназначенный для питания развивающихся клеток. Запасными белками являются яичный альбумин, глиадин пшеницы,

Казеин кукурузы, казеин молока и многие другие. Запасные белки — существенный источник пищевого белка для человека.

Некоторые организмы вырабатывают токсические белки. Таковы яды змей, дифтерийный токсин, рицин семян клещевины, лектины семян бобовых и др.