вторник, 17 января 2023 г.

17.01.23г. ВТОРНИК 508,505,501

 17.01.23г. ВТОРНИК  508,505,501

РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 16.01.23Г.-20.01.23

 

Пн.16.01

Вт. 17.01

Ср. 18.01

Чт. 19.01

Пт.20.01

1,2

306

508

406

505

401

3,4

401

505

505

501

505

5

401

505

401

306

-

6,7

408

501

-

508

501


    Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту:  rimma.lu@gmail.com      Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

Моя почта   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 508 БИОЛОГИЯ 21,22

ТЕМА 21,22:Регуляция работы генов у прокариот и эукариот.



ГРУППА 505 БИОЛОГИЯ 1,2,3

ТЕМА 1,2,3:Введение. Биология – наука о живой природе. Неорганические соединения клетки.

Биология – это наука о живой природе, о закономерностях, управляющих ею. Что изучает биология? Биология как наука изучает структуру, происхождение, рост, функционирование и эволюцию живых организмов.

Биология наука о живой природе. Основу биологии составляют 5 фундаментальных принципов. Это клеточная теория, гомеостаз, генетика, эволюция и энергия. Задачей общей биологии является выявление, а также объяснение общих процессов и явлений для всех организмов. Биология как наука позволяет накопить знания о происходящем в живом мире, хранить их на различных носителях и использовать по мере необходимости. Биологические науки подразделяют по типу исследуемых организмов. Зоология изучает животных, ботаника - растения, а микробиология изучает одноклеточные микроорганизмы. Внутри, биология как наука делится на области по масштабу исследования, или по применяемым методам. Так, предметом изучения гистологии и анатомии является строение организма и тканей, генетики – передача наследственной информации, биохимии - химические основы жизни, молекулярной биологии - взаимодействие между биологическими молекулами, физиологии - химические и физические функции органов и др.

Признаки живого организма:

  • обладает сложным внутренним строением;
  • у любой части организма имеется специальное назначение, и она выполняет возложенные на нее функции;
  • извлекает, преобразовывает и использует энергию, поступающую из окружающей среды, обменивается веществом и энергией;
  • реагируют на изменение окружающей среды (на внешний раздражитель);
  • способность к адаптации, то есть организмы приспосабливаются к окружающей среде;
  • способность к размножению;
  • способность к эволюции (происходит изменение от простого к сложному).

Мир живого разнообразен и имеет сложную структуру.

Организация жизни осуществляется на различных уровнях. Самый нижний уровень – молекулярных структур. Клеточный уровень. Органно-тканевый уровень. При этом уровне организмы являются многоклеточными. Целостного организма. Популяционно-видовой уровеньУровень биоценозов, то есть сообществ всех видов, которые населяют территорию. Биосфера. Это совокупность живого на Земле. Целостная (живая) система обладает следующими качествами:

  • единство химического состава;
  • открытость живых систем;
  • живые системы – саморегулирующиеся, самоорганизующиеся, самоуправляющиеся, самовоспроизводящиеся системы;
  • изменчивость;
  • способность к развитию и росту, то есть к увеличению в массе и размерах, возникновению новых качеств и черт;
  • дискретность и целостность.

Методы изучения. Биология для изучения живых организмов применяет множество разнообразных методов.

Например, к ним можно отнести:

  • Наблюдение. Дает возможность выявлять объекты и различные явления.
  • Эксперимент. Моделируется ситуация, при которой выявляются свойства изучаемых биологических объектов.
  • Сравнение. Позволяет устанавливать общие для различных явлений закономерности.
  • Исторический метод. Познание осуществляется с учетом имеющихся данных об органическом мире. Для изучения биологических объектов применяется различная техника. Это: компьютеры, микроскопы, химические анализаторы, ультрацентрифуги, и многая другая техника.

Биология как наука очень важна для людей, так как исследования, которые проводятся, позволяют нам больше знать о процессах и явлениях, происходящих в живом мире и использовать этот бесценный опыт в повседневной жизни, решить глобальные мировые проблемы. Знание законов биологии позволяет решить практические задачи, например, обеспечить население продовольствием. Агрономия и зоотехника опираются на биологию. Медицина не может обойтись без знания структуры (анатомии) тела человека.

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

    • макроэлементы  – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;
    • микроэлементы  – В, Ni, Cu, Co, Zn, Mb и др.;
    • ультрамикроэлементы  – U, Ra, Au, Pb, Hg, Se и др.

 

Другой принцип классификации элементов:

  • органогены (кислород, водород, углерод, азот),
  • макроэлементы,
  • микроэлементы.
 

Неорганические соединения клетки – вода  и неорганические  ионы.
Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды

Значение для биологических процессов

Высокая теплоемкость (из-за водородных связей между молекулами) и теплопроводность (из-за небольших размеров молекул)

Транспирация
Потоотделение
Периодическое выпадение осадков

Прозрачность в видимом участке спектра

Высокопродуктивные биоценозы прудов, озер, рек ( из-за возможности фотосинтеза на небольшой глубине)

Практически полная несжимаемость (из-за сил межмолекулярного сцепления)

Поддержание формы организмов: форма сочных органов  растений, положение трав в пространстве, гидростатический скелет круглых червей, медуз, амниотическая жидкость поддерживает и защищает плод млекопитающих

Подвижность молекул (из-за слабости водородных связей)

Осмос: поступление воды из почвы; плазмолиз

Вязкость (водородные связи)

Смазывающие свойства: синовиальная жидкость в суставах, плевральная жидкость

Растворитель  (полярность молекул)

Кровь, тканевая жидкость, лимфа, желудочный сок, слюна, у животных; клеточный сок у растений; водные организмы используют растворенный в воде кислород

Способность образовывать гидратационную оболочку вокруг макромолекул (из-за полярности молекул)

Дисперсионная среда в коллоидной системе цитоплазмы

Оптимальное для биологических систем значение сил поверхностного натяжения (из-за сил межмолекулярного сцепления)

Водные растворы – средство передвижения веществ в организме

Расширение при замерзании (из-за образования каждой молекулой максимального числа – 4 – водородных связей_

Лед легче воды, выполняет в водоемах функцию теплоизолятора

 

Неорганические ионы:
катионы K+, Na+, Ca2+ , Mg2+  и анионы Cl–, NO3- ,  PO4 2-,  CO32-, НPO42-.

Разность между количеством катионов и анионов (Nа+, К+, Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.
Анионы фосфорной  кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6—9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7—4.
Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.
Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих.
Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

4. Элементный состав клетки

Группы элементов

% содержания в клетке

Роль в клетке

1.

Макроэлементы

99,9

Органогены:

Кислород

Углерод

Водород

Азот

98

65-70

15-18

8-10

1,5-3

Входят в состав органических веществ клетки

Собственно макроэлементы:

Фосфор

Калий

Сера

Хлор

Кальций

Магний

Натрий

Железо

1,9

0.2-1

0,15-0,4

0,15-0,2

0,05-0.1

0.04-2

0.02-0.03

0.02-0.03

0.01-0.015

Каждый из этих элементов выполняет определенную функцию в клетке

2.

Микроэлементы:

Цинк

Медь

Йод

Фтор

0.001-0,000001

0,0003

0,0002

0,0001

0,0001

Входят в состав ферментов, витаминов и др., выполняют определенную функцию в клетке

3.

Ультрамикроэлементы:

золото, серебро, свинец, уран, селен, цезий, никель, бериллий и др

Не превышает 0,000001

Необходимы для нормального функционирования организма (физиологическая роль большинства из этих элементов не установлена). Некоторые входят в состав ферментов

5.Роль макроэлементов на клеточном и организменном уровне организации

Элемент

Роль в клетке

Роль в организме

Явления, возникающие при недостатке

растительном

животном

у растений

у животных

Натрий (Na) в виде ионов

Участвует в создании и поддержании биоэлектрического потенциала на мембране (в результате работы натриевого и калий-натриевого насосов)

Ионы Na+ участвуют в поддержании осмотического потенциала клеток, что обеспечивает поглощение воды из почвы (регуляция водного обмена)

Ионы Na+ влияют на работу почек;

участвуют в поддержании сердечного ритма(вместе с ионами К+ и Са2+);

вместе с ионами хлора С1‾ составляют большую часть минеральных веществ крови;участвуют в регулировании кислотно-щелочного равновесия организма, входя в состав буферной системы организма,

влияет на синтез гормонов

Недостаток встречается редко

Мышечные судороги

Магний (Mg)

Активирует энергетический обмени синтез ДНК. Объединяет две субъединицы рибосомы

Входит в состав молекулы хлорофилла;ион Mg2+ наряду с Са2+ образует соли с пектиновыми веществами.

Входит в состав ферментов, необходимых для функционирования мышечной,нервной и костной тканей

Хлороз

Кальций (Са)

Ионы Са2+ участвуют в регуляции избирательной проницаемости клеточной мембраны;

участвуют в процессах соединения ДНК с белками

Ионы Са2+, образуя соли пектиновых веществ,придают твердость межклеточному веществу, соединяющему растительные клетки;

участвуют в формировании срединной пластинки между клетками.

Входит в состав оболочек некоторых водорослей

Нерастворимые соли кальция входят в состав костей позвоночных, раковин моллюсков, коралловых полипов, .

Ионы Са2+ участвуют в образовании желчи;

повышают рефлекторную возбудимость спинного мозга и центра слюноотделения;

участвуют в синаптической передаче нервного импульса;

в процессах свертывания крови;

активируют ферменты при сокращении поперечнополосатых мышечных волокон

Угнетение роста вследствие повреждения меристем, в первую очередь страдают корни

Плохой рост костей, рахит. Потеря сознания, плохая свертываемость крови

Железо (Fe)

Входит в состав цитохромов-ферментов — переносчиков электронов на III этапе диссимиляции ив световой фазе фотосинтеза;

в состав каталазы, пероксидазы – ферментов дыхания

Участвует в биосинтезе хлорофилла;

входит в состав ферментов, участвующих в дыхании;

в составе цитохромов — переносчиков электронов в ходе фотосинтеза

Входит в состав гема белка — переносчика кислорода — гемоглобина и белка,содержащего запас кислорода в мышцах —миоглобина.(Небольшой запас находится в железосодержащем белке ферритине в печени и селезенке.)

Сильный хлороз листьев, в частности, молодых листьев

Малокровие

Калий (К)

В виде ионов

Участвует в поддержании коллоидных свойств цитоплазмы (снижает вязкость);

участвует в создании и поддержании биоэлектрического потенциала на мембране(в результате работы натрий-калиевого насоса);

активирует ферменты белкового синтеза;

входит в состав ферментов, участвующих в гликолизе

Участвует в поддержании осмотического давления (регуляции водного режима); участвует в регуляции устьичных движений; входит в состав ферментов, участвующих в фотосинтезе.(Обычный компонент клеточного сока в вакуолях растительных клеток, содержится в виде ионов К+.)

Участвует в поддержании сердечного ритма(вместе с натрием и кальцием); участвует в проведении нервного импульса

Пожелтение и побурение листвы по краям, торможение роста побегов

Недостаток встречается редко, возможен при применении мочегонных препаратов

Сера (S)

Входит в состав аминокислот(цистеина, метионина, цистина); участвует в формировании третичной структуры белка (образование дисульфидных мостиков);

входит в состав кофермента А и некоторых ферментов; участвует в бактериальном фотосинтезе (сера входит в состав бактериохлорофилла,H2S является источником водорода);ОВР соединений серы являются источником Е при хемосинтезе

В основном определяется ролью этого элемента в клетке

В основном определяется ролью этого элемента в клетке.

Кроме того, входит в состав инсулина, витамина B1, биотина, некоторых ферментов.

В печени образует продукты обеззараживания ядовитых веществ

Хлороз (прежде всего в молодых листьях), торможение роста, синтез антоцианов

Фосфор (Р)

В виде остатков фосфорной кислоты входит в состав АТФ, нуклеотидов, ДНК,РНК, коферментов НАД, НАДФ,ФАД, фосфорилированных сахаров, фосфолипидов, многих ферментов;

входит в состав всех мембранных структур;

в минеральной форме (НРО42-, Н2РО4-).

Принимает участие в синтезе белков, фосфолипидов и др.

В основном определяется ролью этого элемента в клетке.

Играет важную роль в цветении, плодоношении и созревании семян

В основном определяется ролью этого элемента в клетке.

В виде фосфатов входит в состав костной ткани,зубной эмали;

у млекопитающих фосфатная буферная система, в состав которой входят анионы Н2РО4‾ и НРО42‾вместе с бикарбонатной буферной системой), поддерживает рН тканевой жидкости в интервале 6,9-7,4

Угнетение роста, в первую очередь, корня;

задержка цветения и плодоношения,

омертвение тканей

Недостаток встречается редко

Хлор (С1)

Анионы Сl‾ (вместе с различными катионами) поддерживают электронейтральность клетки

Анионы Сl‾ участвуют в регуляции тургорного давления,

принимает участие в фотоокислении воды при фотосинтезе

Анионы Сl‾ вместе с катионами натрия Na+ участвуют в формировании осмотического потенциала плазмы крови;участвуют в процессах возбуждения и торможения в нервных клетках;

входят в состав соляной кислоты, являющейся компонентом желудочного сока

Недостаток встречается редко

Мышечные судороги


Тематические задания

Часть А

А1. Полярностью воды обусловлена ее способность
1) проводить тепло          
3) растворять хлорид натрия
2) поглощать тепло         
4) растворять глицерин


А2. Больным рахитом детям необходимо давать препараты, содержащие
1) железо
2) калий
3) кальций
4) цинк


А3. Проведение нервного импульса обеспечивается ионами:
1) калия и натрия
2) фосфора и азота
3) железа и меди
4) кислорода и хлора


А4. Слабые связи между молекулами воды в ее жидкой фазе называются:
1) ковалентными
2) гидрофобными
3) водородными 
4) гидрофильными


А5. В состав гемоглобина входит
1) фосфор
2) железо
3) сера
4) магний


А6. Выберите группу химических элементов, обязательно входящую в состав белков
1) Na, K, O, S        
2) N, P, C, Cl         
3) C, S, Fe, O         
4) C, H, O, N


А7. Пациентам с гипофункцией щитовидной железы дают препараты, содержащие
1) йод        
2) железо      
3) фосфор     
4) натрий

Часть В

В1. Выберите функции воды в клетке
1) энергетическая            
2) ферментативная     
3) транспортная
4) строительная              
5) смазывающая       
6) терморегуляционная


В2. Выберите только физические свойства воды
1) способность к диссоциации        
2) гидролиз солей            
3) плотность
4) теплопроводность        
5) электропроводность      
6) донорство электронов

Часть  С

С1. Какие физические свойства воды определяют ее биологическое значение?

ТЕМА 3:Углеводы. Липиды. 

  • Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.
    Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.
     
    Общая формула углеводов:
    Cn(H2O)m.
    Углеводы состоят из углерода, водорода и кислорода.
    глюкоза.gif
    В состав производных углеводов могут входить и другие элементы.
     
    7319273.png
    Растворимые в воде углеводы. Моносахариды и дисахариды
    Пример:
    из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.
    Глюкоза — основной источник энергии для клеточного дыхания.
    Фруктоза — составная часть нектара цветов и фруктовых соков.
    Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
    Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.
    Пример:
    сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:
    сахароза (глюкоза + фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.
    Лактоза (глюкоза + галактоза) — входит в состав молока млекопитающих.
    Мальтоза (глюкоза + глюкоза) — источник энергии в прорастающих семенах.
    Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.
    Нерастворимые в воде полисахариды
    Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.
     
    Пример:
    полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.
    Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
    Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.
    Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.
    Целлюлоза нерастворима в воде и обладает высокой прочностью.
    Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
    Гликоген — резервный углевод животной клетки.
    В состав соединительных тканей животных входят сложные полисахариды. Они содержатся в межклеточном веществе кожи, в хрящах и сухожилиях.
  • Липиды — обширная группа жироподобных веществ (сложных эфиров жирных кислот и трёхатомного спирта глицерина), нерастворимых в воде. К липидам относят жиры, воски, фосфолипиды и стероиды (липиды, не содержащие жирных кислот).
    Липиды состоят из атомов водорода, кислорода и углерода.
    жир.jpg
    Липиды присутствуют во всех без исключения клетках, но их содержание в разных клетках сильно варьирует (от 23 до 5090 %).
    Липиды могут образовывать сложные соединения с веществами других классов, например с белками (липопротеины) и с углеводами (гликолипиды).
    Функции липидов:
    • запасающая — жиры являются основной формой запасания липидов в клетке.
    • Энергетическая — половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров (при окислении они дают более чем в два раза больше энергии по сравнению с углеводами).
    • Жиры используются и как источник воды (при окислении 1 г жира образуется более 1 г воды).
    • Защитная — подкожный жировой слой защищает организм от механических повреждений.
    • Структурная — фосфолипиды входят в состав клеточных мембран.
    • Теплоизоляционная — подкожный жир помогает сохранить тепло.
    • Электроизоляционная — миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
    • Гормональная (регуляторная) — гормон надпочечников (кортизон) и половые гормоны (прогестерон и тестостерон) являются стероидами.
    • Смазывающая — воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налётом покрыты листья многих растений, воск используется при строительстве пчелиных сот.


ГРУППА 501 БИОЛОГИЯ 13,14

ТЕМА 13,14:Биологическое окисление. Генетическая информация. Удвоение ДНК.

 

Биологическое окисление. Анаэробный этап клеточного дыхания.

И гетеротрофные, и автотрофные организмы способны получать энергию для обеспечения клеточных нужд (биосинтез различных веществ, транспорт и движение) путём окисления органических веществ. Для гетеротрофов окисление органических веществ является единственным способом получения энергии. Фотоавтотрофы используют энергию света для того, чтобы синтезировать сахара, а полученные сахара используются либо для синтеза других веществ и построения тела в ходе процессов анаболизма, либо как источник энергии в катаболизме. Фотосинтезирующие организмы расходуют свои запасы органических веществ случае отсутствия света, например, в темное время суток, а также в клетках, которые находятся в тех частях организма, куда не проникает свет. 

Суть биологического окисления.

Окисление — это процесс отдачи веществом электронов окислителю. Окисление может происходить в ходе различных процессов:

  1. Отдача веществом только электронов. Такое окисление имеет место, например, при превращении


    в составе цитохромов или же как реакция свободного железа при хемосинтезе.

  2. Окислительно-восстановительные реакции органических веществ в клетках часто сопровождаются передачей не только электронов, но и атомов О или Н. 
    а) Поскольку атом О обладает большей электроотрицательностью, чем атом С, увеличение количества атомов кислорода в соединении считается окислением.
    При этом степень окисления углерода в соединении увеличивается (электроны от него смещаются к кислороду, -заряд на атоме С увеличивается).
    Пример — окисление альдегида до карбоновой кислоты.

    б) Поскольку связь С–Н гораздо менее полярная, чем С–О, степень окисления углерода в соединениях с большим количеством атомов Н меньше (менее положительная), чем в соединениях с меньшим количеством атомов Н (при наличии других электроотрицательных атомов — О, N…).

    Поэтому окислением может называться отдача органическим веществом атомов водорода.
    Пример — окисление спирта в альдегид.

Переносчики водорода

Итак, биологическое окисление органических веществ часто происходит путем отдачи атомов водорода [H], то есть протонов  и электронов . Принимают эти атомы водорода, как правило, специальные молекулы — переносчики водорода. Основным переносчиком водорода является НАД (никотинамидадениндинуклеотид). Также в процессах биологического окисления участвует ФАД (флавинадениндинуклеотид). 


Таким образом, НАД переносит 2 электрона и 1 протон, второй протон выделяется в раствор. ФАД переносит 2 электрона и 2 протона.
Принимая на себя атомы водорода, НАД и ФАД в реакциях биологического окисления играют роль окислителей. Восстановленные переносчики — НАДНН и ФАДН — наоборот, играют роль восстановителей, в частности в реакциях анаболизма (синтеза сложных органических веществ). Таким образом, переносчики водорода осуществляют связь катаболизма и анаболизма и передачу атомов водорода между ними. 

Этапы окисления энергетических субстратов

Процесс катаболизма энергетических субстратов (органических веществ) протекает с выделением энергии. Он состоит из следующих этапов:

  1. Подготовительный этап идет в полости пищеварительной системы или — при внутриклеточном пищеварении — во вторичных лизосомах. При этом полимеры расщепляются на мономеры, которые можно перенести через мембрану в цитоплазму клеток (или сначала в кровь, а затем в тканевую жидкость и в цитоплазму). Расщепление катализируют литические ферменты. Например, амилазы и мальтазы расщепляют в тонком кишечнике крахмал до глюкозы.
    Энергия на этом этапе выделяется в виде тепла, АТФ не образуется.

     

Основным источником энергии для многих клеток служит окисление глюкозы или других сахаров, поэтому рассматривается в первую очередь механизм окисления глюкозы, хотя и другие вещества могут окисляться с целью получения энергии (аминокислоты, жирные кислоты…).
Внутриклеточное окисление глюкозы включает два этапа:
а) анаэробный этап в цитоплазме — гликолиз. У анаэробов на этом окисление глюкозы заканчивается, так как нет молекулярного кислорода для дальнейшего окисления;
б) аэробный этап в митохондриях при участии молекулярного кислорода.

Гликолиз

Первый этап внутриклеточного окисления углеводов осуществляется без участия кислорода и называется гликолиз (от «гликис» — сладкий, «лизис» — распад). Он происходит в цитоплазме.

На первых этапах гликолиза тратится две молекулы АТФ на фосфорилирование 1 молекулы сахара. Образующаяся гексоза (С6), несущая два остатка фосфорной кислоты, распадается на две фосфорилированные триозы (2*С3). Затем происходит окисление фосфотриозы (фосфорилированного C3-сахара — «половинки» глюкозы) до фосфоглицериновой кислоты (ФГК). Это окисление осуществляется путем отнятия двух атомов водорода и переноса их на НАД с образованием НАДН. Выделяющаяся при этом энергия используется для присоединения фосфатного остатка к АДФ с образованием АТФ. Так как окислению подвергаются две триозы («половинки» глюкозы), образовавшиеся в результате расщепления 1 глюкозы, то образуется 2 молекулы АТФ на 1 молекулу глюкозы, т. е. восполняются затраты на активацию глюкозы.

Образовавшаяся ФГК превращается далее в пировиноградную кислоту (ПВК), или пируват, при этом синтезируется еще две молекулы АТФ в расчете на 1 молекулу глюкозы. Таким образом, расщепление в гликолизе одной молекулы глюкозы дают в результате выигрыш в 2 молекулы АТФ. Пируват — это конечный продукт гликолиза.
В результате этого процесса в клетке будет накапливаться НАД∙Н, который необходимо снова превратить в НАД. У аэробов водород, который несет НАДН, передается на молекулярный кислород в дыхательной цепи митохондрий с образованием воды и большого количества АТФ.
В условиях же бескислородной среды окисление НАДН до НАД происходит путем передачи водородов на образовавшийся в гликолизе пируват. В отсутствие кислорода пируват все равно не может быть окислен далее. Этот процесс восстановления пирувата и его дальнейших превращений называется брожением, его цель — получение НАД для дальнейшего использования вновь в гликолизе. Без НАД гликолиз остановится, и клетка погибнет от недостатка энергии (АТФ).

 

Различают разные типы брожения:
а) Молочнокислое брожение. ПВК (пируват) превращается в молочную кислоту (лактат). Так происходит, например, при частых сокращениях мышц, когда поступление кислорода недостаточно, и основная часть АТФ получается за счет гликолиза. Накопление молочной кислоты является основным фактором усталости мышц. Аналогичный процесс происходит при росте ряда микроорганизмов в анаэробных условиях. Накапливающаяся при этом молочная кислота подавляет рост гнилостных бактерий и служит консервантом продуктов при приготовлении простокваши, йогурта, квашеной капусты, силоса на корм скоту.

 

б) Спиртовое брожение. Дрожжи на завершающем этапе гликолиза отщепляют от пировиноградной кислоты карбоксильную группу в форме углекислого газа, в результате чего образуется уксусный альдегид. Он восстанавливается путем переноса водородов с НАД∙Н до этилового спирта. На этом процессе основано пивоварение, виноделие, а также поднятие дрожжевого теста (за счет пузырьков образующегося углекислого газа).

ТЕМА:  Генетическая информация. Удвоение ДНК. 

1. ДНК — матрица для синтеза белков. Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют од­ну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру, с книго­печатанием. Учебник, который вы держите в руках, издан ти­ражом п экземпляров. Все п книг отпечатаны с одного шаб­лона — типографской матрицы, поэтому они совершенно оди­наковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и обо всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Уча­сток молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирована еще в 20-х годах выдающимся отечественным биологом Н. К. Кольцовым.

2. Удвоение ДНК. Молекулы ДНК обладают поразительным свойством, не присущим ни одной другой из известных молекул, — способностью к удвоению. Что представляет собой процесс удвоения? Вы помните, что двойная спираль ДНК построена по принципу комплементарности. Этот же принцип лежит в основе удвоения молекул ДНК. С помощью специальных ферментов водородные связи, скрепляющие нити ДНК, разрываются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей последовательно пристраиваются комплементарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными — они задают по­рядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов происходит соединение нуклеотидов друг с другом. При этом образуются новые нити ДНК, комплементарные каждой из ра­зошедшихся цепей. Таким образом, в результате удвоения создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, синтезированную вновь.

Дочерние молекулы ДНК ничем не отличаются друг от друга и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же информацию, которая содержалась в материнской клетке. Так как гены — это участки молекул ДНК, то две дочерние клетки, образующиеся при делении, имеют одинаковые гены.

Каждая клетка многоклеточного организма возникает из одной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов. Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют одинаково «испорченный» гемоглобин. Дети, больные анемией, по­лучают «испорченный» ген от родителей через их половые клет­ки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. Ген является единицей генетической, или наследственной, информации.