четверг, 20 января 2022 г.

 ЧЕТВЕРГ, 20.01.22 г. 408, 403,  408, 405 ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО  НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ: 

СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И  НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ,  И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . ВНИМАНИЕ!!! На выполнение задания отводится 1 неделя. Моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

Критерии оценивания: Для получения отличной оценки обучающийся должен:- соблюдать отведенное время; - разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.

ГРУППА 408 ХИМИЯ 25, 26

ТЕМА: Практическая работа №2. Получение этилена и изучение его свойств

Практическая работа №2. Получение этиле­на и изучение его свойств.

Цель: научиться получать в лаборатории этилен; изучить физические и химические свойства этилена.

Оборудование: пробирки, пробка с газоотводной трубкой, штатив, спиртовая горелка, спички.

Реактивы: C2H5OH, H2SO4(конц.)песок, бромная вода (Br2)KMnO4.


Ход работы


С правилами техники безопасности ознакомлен(а) и обязуюсь их выполнять.


В пробирку налили 1 мл этилового спирта и осторожно добавьте 6—9 мл концентрированной серной кислоты. Затем всыпали немного прокаленного песка (чтобы предотвратить толчки жидкости при кипении). Закрыли пробирку пробкой с газоотводной трубкой, закрепили ее в штативе и осторожно нагрели содержимое пробирки.

hello_html_m52ded3f7.png

В пробирке начинается выделяться газ - этилен.

С2H5OH C2H4↑ + H2O.


В ходе реакции концентрированная серная кислота забирает воду из спирта, врезультате образуется этилен.

Такую реакцию называют – реакция дегидратации.



2.

Изучение свойств этилена.

В другую пробирку налили 2-3 мл бромной воды. Опустили газоотводную трубку первой пробирки до дна пробирки с бромной водой и пропускали через неё выдедяющийся газ.

hello_html_m25dbf9b6.png

При пропускании газа через бромную воду, происходит обесцвечивание бромной воды.

H2C=CH2 + Br2 → CH2Br – CH2Br

В ходе реакции происходит окисление этилена бромной водой по двойной связи.

В третью пробирку налили 2-3 мл разбавленного раствора KMnO4поодкисленного серной кислотой, и пропустили через него газ.

hello_html_m394fa826.png

При пропускании газа через подкисленный раствор KMnO4, происходит обесцвечивание раствора KMnO4.

5C2H4+12KMnO4+18H2SO4→10CO2+6K2SO4+

+12MnSO4+28H2O.

В ходе реакции происходит окисление этилена подкисленным раствором перманганата калия.

Выделяющиеся газ первой пробирки подожгли.

hello_html_21e95ec4.png

Этилен на воздухе горит ярким светящимся пламенем.

С2Н4 + 3О2 → 2СО2+2Н2О.

Этилен горит ярким светящимся пламенем, что доказывает наличие кратных связей.



Вывод: на данной практической работе мы научились получать в лаборатории этилен реакцией дегидратации спиртов; изучили химические свойства этилена, а именно, действие этилена на бромную воду и подкисленный раствор перманганата калия.

ТЕМА:Понятие о диеновых углеводородах. Природный каучук

Понятие о диеновых  углеводородах. Природ­ный каучук.

 

СОСТАВИТЬ КОНСПЕКТ ПО ПРЕЗЕНТАЦИИ

ГРУППА 403 БИОЛОГИЯ 45,46

Тема:  Роль изменчивости в эволюционном процессе. Л.Р.№5«Изменчивость организмов».

Различают наследуемые изменения самих генов (мутации), изменения, обусловленные сочетанием разных генов у индивидов (комбинативная наследственная изменчивость), изменения, вызванные влиянием средовых условий (модификационная изменчивость).

Используя учебник §38, найти материал по заданию, переработать его и рассказать другим группам:

1 группа - наследственная изменчивость дает материал для эволюции.

2 группа – комбинативная изменчивость.

3 группа – мутационная изменчивость

4 группа - связь генетики с эволюционной теорией (С.С.Четвериков).

а). Наследственная изменчивость дает материал для эволюции.

Наследственная изменчивость — это мутации, которые могут возникать в популяциях. Рецессивные мутации накапливаются, доминантные проявляются. Отбор, действуя в популяциях, отбраковывает особи с ненужными признаками, оставляя особей с полезными признаками. Что является результатом эволюционного процесса? Приобретение приспособлений отдельными группами организмов может при определенных условиях привести к образованию новых видов

б). Комбинативная изменчивость.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов.

Практически неограниченными источниками генетической изменчивости служат три процесса:

  1. Независимое расхождение гомологичных хромосом в первом мейотическом делении.

Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.

2. Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются).

Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

в). Значение комбинативной изменчивости

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Таким образом, комбинативная изменчивость — это следствие перекреста гомологичных хромосом, их случайного расхождения в мейозе и случайного сочетания гамет при оплодотворении. Комбинативная изменчивость ведет к появлению бесконечно большого разнообразия генотипов и фенотипов. Она служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора. Если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, количество возможных гамет составит 223, а число возможных генотипов — З23. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы отличаются по нескольким генам и в расчете не учтено явление перекреста. Поэтому количество возможных генотипов выражается астрономическим числом и можно с уверенностью утверждать, что появление двух одинаковых людей практически невероятно. Однояйцевые близнецы составляют исключение.

г). Мутационная изменчивость.

Мутационной называется изменчивость самого генотипа.

Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Мутационная изменчивость играет роль главного поставщика наследственных изменений.

Именно она является первичным материалом всех эволюционных преобразований. Одним из распространенных типов геномных мутаций является полиплоидия, имеющая важное значение в эволюции растений. Полиплоидные виды растений часто занимают арктические и альпийские зоны. Считают, что это связано с их повышенной устойчивостью к неблагоприятным факторам среды.

Хромосомные мутации также играют важную эволюционную роль. Прежде всего необходимо указать на удвоение генов в одной хромосоме. Именно благодаря удвоениям генов в процессе эволюции накапливается генетический материал. Нарастание сложности организации живого в ходе исторического развития в значительной степени опиралось на увеличение количества генетического материала. Достаточно сказать, что количество ДНК в клетке у высших позвоночных примерно в 1000 раз больше, чем у бактерий. Другой тип хромосомных мутаций, который достаточно часто обнаруживается у животных и растений, — перемещение участка хромосомы.

Особи, гетерозиготные по таким мутациям, часто обладают пониженной плодовитостью, в то время как гомозиготы размножаются нормально. Некоторые ученые полагают, что появление таких мутаций может нарушать генетическое единство вида и приводить к обособлению внутри его репродуктивно изолированных популяций.

Наиболее частый тип мутаций — генные. Они играют очень важную роль в эволюционном процессе. Мутации отдельных генов происходят редко. Мутация гена возникает в среднем в одной из 100000 гамет. Но так как количество генов в организме (например, млекопитающих) составляет около 40000, то практически каждая особь несет вновь возникшую мутацию.

Большинство мутаций рецессивные, доминантные мутации возникают намного реже. Доминантные и рецессивные мутации ведут себя в популяциях по-разному.

Доминантные мутации, даже если они находятся в гетерозиготном состоянии, проявляются в фенотипах особей уже первого поколения и подвергаются действию естественного отбора. Рецессивные же мутации проявляются в фенотипе только в гомозиготном состоянии.

д). Связь генетики с эволюционной теорией (С.С.Четвериков). Рецессивная мутация, прежде чем она проявится в фенотипе гомозигот, должна накопиться в значительном количестве в популяции. Эту мысль первым высказал отечественный генетик С. С. Четвериков. Он был первым ученым, сделавшим важнейший шаг на пути объединения генетики с эволюционной теорией. В 1926 г. Четвериков опубликовал знаменитую работу «О некоторых моментах эволюционного процесса с точки зрения современной генетики», с которой и начался новый этап развития эволюционной теории.

С. С. Четвериков сделал важный вывод о насыщенности природных популяций большим количеством рецессивных мутаций. Он писал, что популяция, подобно губке, впитывает рецессивные мутации, оставаясь при этом фенотипически однородной. Существование такого скрытого резерва наследственной изменчивости создает возможность для эволюционных преобразований популяций под воздействием естественного отбора. Как показал И. И. Шмальгаузен, сама способность популяций накапливать генетическую изменчивость является результатом естественного отбора.

В последнее время благодаря успехам молекулярной генетики и генетики развития все более ясным становится, какую огромную роль играют в эволюции мутации, возникающие не в самих структурных (кодирующих белки) генах, а в регуляторных участках этих генов. Они могут модифицировать уровень транскрипции структурных генов, время и место их включения и выключения, создавая огромное разнообразие форм и функций организмов. Значительные морфологические различия между классами позвоночных зависят от накопления мелких мутаций в регуляторных элементах.

Рассмотрим простой пример. Размер и положение грудной клетки у курицы, мыши и удава контролируются одним и тем же структурным геном. Последовательность нуклеотидов в этом гене одинакова у всех трех видов (как и у всех остальных позвоночных). Однако изменения, произошедшие в его регуляторных элементах, приводят к тому, что у удава этот ген работает почти во всех клетках хорды эмбриона, у мыши — в передней части, а у курицы — в задней части хорды. В результате грудная клетка удава формируется от головы почти до кончика хвоста, у мыши — ближе к голове, а у курицы — ближе к хвосту.

В природных популяциях накоплено огромное число мутаций по регуляторным элементам самых разных структурных генов.

Громадное генотипическое и, следовательно, фенотипическое разнообразие в природных популяциях является тем исходным эволюционным материалом, с которым оперирует естественный отбор.

Лабораторная работа №5 (на отдельном двойном листке)

Тема: Изменчивость организмов.

Цель: 1.Сравнить 2 растения одного вида или их отдельные органы: семена, листья. Найти признаки сходства в их строении. Объяснить причины сходства особей одного вида.

2.Выявить у исследуемых растений признаки различия.
3.Раскрыть значение этих свойств организмов для эволюции. 
Оборудование : комнатное растение Драцена окаймленная.




Ход работы:
Сравним  2 растения 
Драцена окаймленная: 


1.Признаки сходства: форма листа, корневая система, длинный стебель, параллельное жилкование листьев. Сходство этих растений говорит о том, что у них одинаковые наследственные признаки.
2.Признаки различия: ширина и длина листовой пластинки, длина стебля. Растения одного вида имеют различия, так как обладают индивидуальной изменчивостью.

3.
Различия, которые обусловлены наследственной изменчивостью: форма цветка, форма листа. Различия, которые обусловлены не наследственной изменчивостью: ширина и длина листа, высота стебля.


Вывод:  
Благодаря наследственности организмы передают свои признаки из поколения в поколение. Изменчивость делится на наследственную, которая дает материал для естественного отбора и не наследственную, которая возникает из-за изменений факторов окружающей среды и помогает растению приспособиться к этим условиям.

Различия между особями одного вида могли произойти из-за разных условий окружающей их среды, а также из-за разного ухода за растениями.



ГРУППА 408 БИОЛОГИЯ 24

ТЕМА: Генная и клеточная инженерия.

Биотехнология 

— это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объекты биотехнологии: многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.}, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы).  Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главные направления биотехнологии:

1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2)   применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3)   создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Задачи, методы и достижения биотехнологии. 

Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Генная (генетическая) инженерия —

раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки.

Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;

соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики (например, получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.).

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

Клеточная инженерия 

совокупность методов, используемых для конструирования новых клеток. Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов. 

В основе  клеточной инженерии  лежит использование методов культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях. Это стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений — картофеля, пшеницы, ячменя, кукурузы, томатов и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии — соматической гибридизации, гаплоидии, клеточной селекции, преодоления нескрещиваемости в культуре и др.

Клонирование —

метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

 Выполните тесты (сначала на бумаге, затем в электронном виде)

Генная и клеточная инженерия.
Введите свой текст здесь.
rimma.lu@gmail.com Сменить аккаунт
Электронная почта *
Имя, фамилия, группа *
1. Производством лекарств, гормонов и других биологических веществ занимается такое направление, как *
1 балл
2. В каком случае метод культуры тканей окажется наиболее полезным? *
1 балл
3. Участок ДНК, в котором записана информация о первичной структуре белка: *
1 балл
4. Для того чтобы искусственно получать человеческий инсулин методами генной инженерии в промышленных масштабах, необходимо *
1 балл
5. Совокупность методов, позволяющих путем операций in vitro переносить информацию из одного организма в другой – это: *
1 балл

Отправить
Очистить форму

ГРУППА 405 БИОЛОГИЯ 7,8

ТЕМА: АТФ и другие органические соединения клетки. 

Аденозинтрифосфорная кислота — АТФ
Нуклеотиды служат составными компонентами для многих важных органических веществ, например для веществ выполняющих в клетке энергетическую функцию: АТФГТФ и т. д.

Универсальным источником энергии во всех клетках служит АТФ — аденозинтрифосфорная кислота, или аденозинтрифосфат.
АТФ находится в цитоплазме, а также в клеточных ядрах и в двухмембранных органоидах (пластидах и митохондриях). Это вещество является основным источником энергии для биохимических процессов, которые протекают в клетке.
АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтез веществ, деление и т. д. Количество АТФ в клетке зависит от выполняемых этой клеткой функций. Обычно содержание этого вещества составляет приблизительно 0,05 %  от массы клетки, но может доходить до 0,5 %, если затраты АТФ велики (например, в клетках мышечной ткани).
Строение АТФ
АТФ представляет собой нуклеотид, состоящий из азотистого основания — аденина, углевода рибозы и трёх остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.
Остатки фосфорной кислоты соединены друг с другом в молекуле АТФ высокоэнергетическими (макроэргическими) связями. При разрыве такой связи выделяется почти в 4 раза больше энергии, чем при разрыве других связей. Обычно их обозначают символом ~.

АТФ — неустойчивая структура, и при отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), высвобождая 40 кДж энергии.
АТФ-АДФ.jpg
Другие производные нуклеотидов
Особую группу производных нуклеотидов составляют переносчики водорода. Молекулярный и атомарный водород обладает большой химической активностью и выделяется или поглощается в ходе различных биохимических процессов. Одним из наиболее широко распространённых переносчиков водорода является никотинамиддинуклеотидфосфат (НАДФ).
 
НАДФ.png
 
Молекула НАДФ способна присоединять два атома или одну молекулу свободного водорода, переходя в восстановленную форму НАДФH2. В таком виде водород может быть использован в различных биохимических реакциях.
Нуклеотиды могут также принимать участие в регуляции окислительных процессов в клетке.
Витамины
Витамины — сложные органические соединения, которые требуются живым организмам для нормального протекания биохимических процессов в незначительных количествах. От других органических соединений витамины отличаются тем, что не являются источником энергии или исходных веществ для образования клеточных органоидов. Некоторые витамины синтезируются в самом организме, но в основном эти вещества поступают с пищей. А клетки бактерий могут самостоятельно производить почти все необходимые им витамины.
Витамины обычно называют буквами латинского алфавита. Их делят на две группы: водорастворимые (B1B2B5B6B12PPC) и жирорастворимые (ADEK).

Витамины принимают участие в обмене веществ преимущественно как составная часть сложных ферментов. Их отсутствие или недостаток приводит к тяжёлым нарушениям жизнедеятельности организма.

ТЕМА:Клетка – элементарная единица живого.

Клетка - элементарная единица структурной организации живой материи

Клетка — элементарная единица структуры, функции и развития живой материи, которая характеризуется подразделением на ядро (или нуклеоид), цитоплазму и клеточную мембрану и обладает всем комплексом свойств живого: самовоспроизведением, саморазвитием, ростом, саморегуляцией, обменом веществ и энергии, раздражимостью, подвижностью, адаптацией и способностью противостоять энтропии.

В состав многоклеточных организмов наряду с клетками входят симпласты, синцитии1 и межклеточное вещество. Однако ведущей формой структурной организации организмов, безусловно, является клетка, поскольку все перечисленные выше формы являются либо производными клетки (клеток), либо образуются в результате ее синтетической деятельности.

Все клеточные формы органического мира, как указывалось выше, подразделяются на прокариот и эукариот; их сравнительная характеристика представлена в табл. 3.1 и на рис. 3.1.

Таблица 3.1

Сравнительная характеристика прокариот и эукариот

Признаки и свойства

Прокариоты

Эукариоты

Морфологически оформленное ядро

Отсутствует

Имеется

Нуклеоид*

И меется

Отсутствует

Форма молекулы ДНК

Кольцевая

Линейная

Длина ДНК

1 (условно)

1000 (по отношению к прокариотам)

Ядерные белки, связанные с ДНК

Отсутствуют

Имеются

CRISPR-систсма в геноме**

Имеется

Отсутствует

Плоидность

генома

Гаплоидный

Диплоидный***

Фенотипические проявления мутаций

Каждая мутация реализуется в фенотипе

Возможно сохранение мутантного рецессивного гена в гетерозиготном состоянии

Микротрубочки и состоящие из них структуры (цеитриоли и др.)

Отсутствуют

Имеются

Деление митозом

Не характерно****

Характерно

Клеточная оболочка

Плазмалемма + клеточная стенка (из пептидоглика- нов)

Плазмалемма (+ клеточная стенка из целлюлозы у растений и хитина — у грибов)

Сократительные белки (актин и миозин)

Отсутствуют

Имеются

1 Симпласты и синцитии состоят из единой цитоплазмы с множеством ядер и покрыты клеточной мембраной. Симпласты образуются в результате слияния нескольких клеток (скелетное мышечное волокно), синцитии — в результате многократного митотического деления ядра без последующего разделения клеточного тела (часть сперматогенного эпителия).

Признаки и свойства

Прокариоты

Эукариоты

Жгутики

Пить жгхтика построена из субъединиц белка флагсл- лина, образующих спираль

Каждый жгутик содержит набор микротрубочек, собранных в группы

Способ питания

Голофитный (всасывание растворенных веществ; не способны к образованию псевдоподий)

Голозойный (захват твердых частиц)

Система внутриклеточных мембран

Отсутствует (внутриклеточные потоки не упорядочены)

Имеется (внутриклеточные потоки упорядочены)

Рибосомы

Имеются, масса небольшая

Имеются

Митохондрии и хлоропласты

Отсутствуют

Имеются

Локализация биоэнергетических структур

Клеточная оболочка

Митохондрии

Эволюционные

перспективы

Адаптивная эволюция (структурные перестройки невозможны)

11рогрессивная (возможны глубокие структурные преобразования)

* Находящаяся в центре прокариотической клетки структура, имеющая форму ромашки (центральная часть — остов — образован РНК, «лепестки» — около 50 петель ДНК).

** Особая генетическая конструкция, обеспечивающая иммунную защиту бактерий от вирусов и играющая определенную роль в рекомбинации и репарации ДНК.

*** За исключением половых клеток и соматических клеток некоторых водорослей, грибов, растений (мхов).

**** Прокариотические клетки размножаются простым поперечным делением.

Общая схема строения прокариотической (я) и эукариотической (6) клеток

Рис. 3.1. Общая схема строения прокариотической (я) и эукариотической (6) клеток:

1 — плазматическая мембрана; 2 — клеточная стенка; 3 — жгутик; 4 — нуклеоид; 5 — рибосомы; 6 — ядро; 7 — мембранные органеллы

Эукариоты в эволюционном плане оказались более перспективными по сравнению с прокариотами, так как:

  • • содержали больший объем генетической информации (двойной набор генов, множество копий отдельных генов);
  • • имели возможность накапливать в популяциях особей рецессивные мутантные гены в гетерозиготном состоянии и тем самым формировать резерв наследственной изменчивости (важное условие для эффективного протекания естественного отбора);
  • • могли осуществлять более тонкую и сложную регуляцию жизнедеятельности клеток (множество регуляторных генов, возможность использовать геном по частям);
  • • имели более совершенную пространственно-временную организацию метаболизма (благодаря компартментации внутреннего объема клетки, т.е. разделения пространства клетки мембранами на отсеки);
  • • обладали более пластичной клеточной оболочкой, способной к образованию разнообразных межклеточных соединений с различными функциями (контактов);
  • • имели высокосовершенный механизм воспроизведения генетически идентичных клеток (митоз), на базе которого при дальнейшей эволюции многоклеточных форм возник мейоз;
  • • обладали более эффективным механизмом извлечения и аккумулирования энергии (дыхание).