среда, 25 ноября 2020 г.

 СРЕДА, 25.11.20 г.  301,305,108,205,106

Группа 301.

Тема: Деление клетки. Митоз.Мейоз. Образование половых клеток и оплодотворение.




Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Клеточный цикл, митоз, мейоз, фазы клеточного деления, гаметогенез, оплодотворение.

Амитоз – это простое (прямое) деление клеток, которое встречается сравнительно редко, и при котором клетка разделяется на равные либо неравные части

Митоз (непрямое деление клетки) – это наиболее часто встречающаяся форма клеточного деления, состоящая из нескольких этапов (профаза, метафаза, анафаза, телофаза).

Мейоз (редукционное деление клетки) – это форма деления ядра, при котором число хромосом в клетке уменьшается вдвое, а также происходит трансформация генного аппарата.

Хромосомы (от хромо... и сома), органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов.

Редупликация - самоудвоение молекулы ДНК

Хроматида - структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате репликации (удвоения) хромосом.

Центромера - участок хромосомы, удерживающий вместе две хроматиды.

Веретено деления — структура, возникающая в клетках эукариот в процессе деления ядра. Состоит из микротрубочек.

5.   Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

Учебник «Биология.10-11класс», созданный под редакцией академика Д.К.Беляева и профессора Г.М.Дымшица / авт.-сост. Г.М. Дымшиц и О.В.Саблина.- М.: Просвещение, 2018г., с.50-60




Теоретический материал для самостоятельного изучения;

Клеточный или жизненный цикл – период существования клетки от момента ее образования путем деления исходной (материнской) клетки, включая само деление, до собственного деления или смерти

Деление клеток — это естественный процесс, который обеспечивает нормальный рост, развитие и размножение организма. За счет этого увеличивается количество клеток, осуществляется рост тканей, половое размножение и передача наследственного материала. Основные типы деления клеток — это мейоз и митоз. Каждый из этих процессов имеет некоторые особенности.

Митоз — это деление клеток, в конечном итоге которого из материнской клетки образуется две дочерние с идентичным количеством и порядком хромосом. Подобные процессы постоянно происходит с соматическими клетками организма, обеспечивая рост, развитие, регенерацию тканей и органов. Жизненный цикл клетки можно разделить на интерфазу и митоз. Интерфаза — это так называемая стадия спокойствия, во время которой идет активный синтез и накопление необходимых для деления клеток веществ. Ближе к началу митоза происходит удваивание количества хромосом.

Митоз же принято разделять на четыре основных стадии. Профаза. В это период можно заметить начало конденсации хромосом. Две идентичные хромосомы соединяются между собой одной центромерой. В начале профазы происходит деление центриоли. Теперь две дочерние центриоли начинают медленно расходиться к двум противоположным сторонам клетки. При этом они остаются связанными тонкими белковыми нитями — так формируется веретено деления. К концу этой стадии хромосомы сильно укорачиваются и становятся толще и двигаются к экватору клетки. Метафаза — очень коротка стадия, которая начинается с выстраивания хромосом по экватору клетки. Примерно в то же время одновременно во всех хромосомах происходит деление центромеры. Анафаза — нить веретена деления крепится в центромере хромосомы. В это период дочерние хромосомы медленно двигаются к противоположным полюсам. Считается, что нити веретена деления не только направляют хромосомы, но и благодаря наличию АТФ сокращаются, ускоряя их расхождение. Телофаза — начинается в тот момент, когда хромосомы уже разошлись к полюсам. Они раскручиваются и становятся менее заметными — возвращаются в состояние покоя. Вокруг скопления хроматина происходит синтез новой ядерной оболочки. Параллельно с этим происходит цитокинез — цитоплазма и органеллы равномерно разделяются между дочерними клетками.

Мейоз — это способ деления клеток, во время которого образуется четыре гаметы с одинарным набором хромосом. Такие процессы происходят во время образования половых клеток — сперматозоидов, яйцеклеток (у растения таким образом происходит образование спор). Подобные процессы обеспечивают обмен генетическим материалом и комбинаторную изменчивость. При слиянии двух гамет, каждая из которых содержит лишь половину генетического материала, количество хромосом восстанавливается, но их последовательность изменяется. Процесс образования гамет состоит из двух коротких мейотических делений, в каждом из которых можно выделить все вышеописанные стадии. Но между двумя делениями нет выраженной интерфазы, и синтез ДНК не происходит. Следовательно, во вторую профазу вступает две клетки с одинарным набором хромосом (у человека это 46). Результат второго деления — это 4 гаметы, которые имеют по 23 хромосомы. Амитоз

Амитоз — это нехарактерное деление клеток, которое наблюдается довольно редко. При этом клетка сохраняет все физиологические функции. Во время этого процесса не происходит удваивание генетического материала и деления клетки. Делится только ядро, но без образования веретена деления. В результате такого процесса хромосомы расходятся в случайном порядке — образуется многоядерная клетка. Стоит отметить, что амитоз, как правило, встречается или в стареющих и умирающих клетках, или же в патологически измененных структурах (опухолевые клетки).

Биологическое значение мейоза

1. Половое размножение.

У организмов, размножающихся половым путем, в результате мейоза образуются 4 клетки с половинным набором хромосом. При оплодотворении гаметы сливаются, образуется зигота, и диплоидный набор восстанавливается.

2. Генетическая изменчивость.

Мейоз создает возможности для возникновения в гаметах новых генных комбинаций, обеспечивая комбинативную изменчивость.

Гаметогенез – развитие половых клеток, образование гамет.

Развитие сперматозоидов - сперматогенез яйцеклетки → овогенез или оогенез.

В обоих случаях процесс включает 3 фазы:

Фаза размножения,

фаза роста,

фаза созревания.

Фаза размножения включает многократные митотические деления, приводящие к образованию сперматогоний или оогоний.

Каждая из них проходит фазу роста, в результате – сперматоцит I порядка или ооцит I порядка включает многократные митотические деления, приводящие к образованию сперматогоний или оогоний.

Каждая из них проходит фазу роста, в результате – сперматоцит I порядка или ооцит I порядка

В фазе созревания происходит мейоз I и мейоз II с последующей дифференцировкой гаплоидных клеток и формированием зрелых гамет.

суть двойного оплодотворения (С.Г. Навашин, 1898 г.)

При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам за счет вегетативной клетки, образующей пыльцевую трубку. На конце пыльцевой трубки генеративная клетка образует 2 спермия. Проникая в зародышевый мешок через микропиле (пыльцевход), один спермий (n) оплодотворяет яйцеклетку (n), а второй (n) – центральную клетку (2n).

В результате оплодотворенная яйцеклетка – зигота (2n) – дает начало зародышу семени, оплодотворенная центральная клетка (3n) образует эндосперм, семязачаток образует семя, покровы семязачатка (интегументы) – семенную кожуру, завязь – плод.


Группа 305.

Тема:Нуклеиновые кислоты.АТФ и другие органические соединения клетки. 



1. Типы нуклеиновых кислот. Название нуклеиновые кислоты происходит от латинского слова «нуклеос», т.е. ядро: они впервые были обнаружены в клеточных ядрах. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения и играют центральную роль в хранении и передаче наследственной информации. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Каждый из нуклеотидов, входящих в состав РНК, содержит триуглеродный сахар — рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, — аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

2. Строение ДНК. Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар — дезоксирибозу; одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых основания.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц.

Схематически сказанное можно выразить следующим образом:

А (аденин) — Т (тимин)

Т (тимин) — А (аденин)

Г (гуанин) — Ц (цитозин)

Ц (цитозин) — Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

3. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие и другой вид РНК — транспортная            (т-РНК), которая подносит аминокислоты к месту образования белковых молекул — рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная            (р-РНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина — урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация обо всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

4. Транскрипция.

Процесс образования и-РНК называется транскрипцией (от лат. «транскрипцио» - переписывание). Транскрипция происходит в ядре клетки. ДНК → и-РНК с участием фермента полимеразы. т-РНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот,  т-РНК получает команду от и-РНК — антикодон узнает кодон  и несет аминокислоту.

5. АТФ и другие органические соединения клетки

В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров. К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды — мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что, в конечном счете, приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями.

АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ. 

Средняя продолжительность жизни 1 молекулы АТФ в организме человека менее минуты, поэтому она расщепляется и восстанавливается 2400 раз в сутки.

В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ = АДФ + Ф + Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

АТФ + H2O → АДФ + H3PO4 + энергия(40 кДж/моль)

АТФ + H2O → АМФ + H4P2O7 + энергия(40 кДж/моль)

АДФ + H3PO4 + энергия(60 кДж/моль) → АТФ + H2O

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

IV.  Итог занятия.

1. О б о б щ е н и е изученного материала.

Вопросы к студентам:

1. Какие компоненты входят в состав нуклеотидов?

2. Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?

3. Дайте сравнительную характеристику ДНК и РНК.

4. Решите задачи:

1) Фрагмент одной цепи ДНК имеет следующий состав:

   Г-Г-Г-А-Т-А-А-Ц-А-Г-А-Т достройте вторую цепь.

Ответ: ДНК    Г-Г-Г- А-Т-А-А-Ц-А-Г-А-Т

                Ц-Ц-Ц-Т-А-Т-Т-Г-Т-Ц-Т-А

          (по принципу комплементарности)

2) Укажите последовательность нуклеотидов в молекуле и-РНК, построенной на этом участке цепи ДНК. 

Ответ: и-РНК   Г-Г-Г-А-У-А-А-Ц-А-Г-Ц-У

3) Фрагмент одной цепи ДНК имеет следующий состав:

  • —А—А—А—Т—Т—Ц—Ц—Г—Г—. достройте вторую цепь.

  • —Ц—Т—А—Т—А—Г—Ц—Т—Г—.

5. Решите тест:

4) Какой из нуклеотидов не входит в состав ДНК?

а) тимин;

б) урацил;

в) гуанин;

г) цитозин;

д) аденин.

Ответ: б

5) Если нуклеотидный состав ДНК

    -АТТ-ГЦГ-ТАТ-  то каким должен быть нуклеотидный состав и-РНК?

      а) ТАА-ЦГЦ-УТА;

      б) ТАА-ГЦГ-УТУ;  

      в) УАА-ЦГЦ-АУА;

      г) УАА-ЦГЦ-АТА.

Ответ: в

6) Антикодон т-РНК УУЦ соответствует коду ДНК? 

а) ААГ;

б) ТТЦ;

в) ТТГ;

г) ЦЦА.

Ответ: б

7) В реакцию с аминокислотами вступает:

а) т-РНК;  

б) р-РНК;    

в) и-РНК;  

г) ДНК.

Ответ: а


Группа 108.

Тема:Понятие о коррозии металлов. Способы за­щиты от коррозии.


Понятие о коррозии металлов. Способы защиты от коррозии

Посмотрите учебный фильм "Коррозия металлов, способы защиты от неё" и ответьте на вопросы:
  1. Что такое "коррозия"?
  2. Какие виды коррозии по механизму протекания  можно выделить?
  3. Какие виды защиты от коррозии существуют?

КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ 

1. Коррозия (от латинского «corrodere» разъедать) – самопроизвольный окислительно-восстановительный процесс разрушения металлов и сплавов вследствие взаимодействия с окружающей средой.

2. Виды коррозии: химическая и электрохимическая  

I. Химическая – коррозия, обусловленная взаимодействием металлов с веществами, содержащимися в окружающей среде, при этом происходит окислительно-восстановительное разрушение металла без возникновения электрического тока в системе.

К химической коррозии относятся:

газовая коррозия - коррозионное разрушение  под воздействием газов при высоких температурах;

коррозия в жидкостях-неэлектролитах.

Газовая 

- химическая коррозия, обусловленная взаимодействием металлов с газами.

Основной окислитель – кислород воздуха.

Процессы химической коррозии железа:

2Fe + O2 = 2FeO

4Fe + 3O2 = 2Fe2O3

3Fe + 3O2 = FeO·Fe2O3 (смешанный оксид железа (IIIII) )

4Fe + 3O2 + 6H2O = 4Fe(OH)3 (на воздухе в присутствии влаги)

Fe(OH)3 t °C    H2O + FeOOH (ржавчина)

3Fe + 4H2O(пар) = Fe3O4 + 4H2

2Fe + 3Cl2 = 2FeCl3

Химическая коррозия  в жидкостях-неэлектролитах

Жидкости-неэлектролиты - это жидкие среды, которые не являются проводниками электричества. К ним относятся:  органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые  неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется.  Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород - химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

- подход окислителя к поверхности металла;

- хемосорбция реагента на поверхности;

- реакция окислителя с металлом (образование оксидной пленки);

- десорбция оксидов с металлом (может отсутствовать);

- диффузия оксидов в неэлектролит (может отсутствовать).

Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на  ее поверхность наносят покрытия,  устойчивые в данной среде.

II. Электрохимическая – окислительно-восстановительное разрушение сплавов и металлов, содержащих примеси, с возникновением электрического тока в системе.

АНОД (более активный металл) – разрушается

КАТОД (менее активный металл или примесь неметалла, способного + ē) – восстанавливается среда

Ме0 – nē → Men+ (процесс окисления)

 

кислая среда: 2H+ + 2ē → H2 (процесс восстановления)

влажный воздухO2 + 2H2O + 4ē → 4OH- (процесс восстановления)

 Пример:

Электрохимическая коррозия железной детали с примесями меди во влажном воздухе.

А:  Fe0 - 2ē → Fe2+ (Окисление)

К:  O2 + 2H2O + 4ē → 4OH- (процесс восстановления)

Итог: 2Fe O2 + 2H2O  = 2Fe(OH)2 (белая ржавчина)

4Fe(OH)2 + 2H2O + O = 4Fe(OH)3  (бурая ржавчина)

Fe(OH)3 = FeOOH + H2O

III. Защита от коррозии:

1). Металлические покрытия – анодное (покрытие более активным металлом ZnCr) – оцинкованное железо; катодное (покрытие менее активным металлом NiSnAgAu) – белая жесть (лужёное железо) – не защищает от разрушения в случае нарушения покрытия.

2). Неметаллические покрытия – органические (лаки, краски, пластмассы, резина - гумирование, битум);

неорганические (эмали).

3). Протекторная защита – присоединение пластины из более активного металла (AlZnMg) – защита морских судов.                     

4). Электрохимическая (катодная) защита – соединение защищаемого изделия с катодом внешнего источника тока, вследствие чего изделие становится катодом. Ток идёт в противоположном направлении.

5). Добавление ингибиторов ( в зависимости от природы металла – NaNO2Na3PO4, хромат и бихромат калия, ВМС органические соединения), адсорбируются на поверхности металла и переводят его в пассивное состояние.


Группа 205

Тема: Алкены.



К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов — алканов.

Строение алкенов


Алкены
 — ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название — олефины — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел.алкен
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр2-гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

этилен строение сигма и пи связь двойная связь

Строение этилена

этилен строение сигма и пи связь

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена): С2Н4 — этен, С3Н6 — пропен, С4Н8 — бутен, С5Н10 — пентен, С6Н12 — гексен, С7Н14 — гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, — это бутен:

бутен
Особым видом структурной изомерии является изомерия положения двойной связи:

структурная изомерия алкенов двойная связь

Алкены изомерны циклоалканам (межклассовая изомерия), например:

циклогексан



 

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии — геометрической, или цис- и транс-изомерии.

изомерия цис-транс

цис и транс бутен
Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

5-метилгексен-2

5-метилгексен-2

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

2-метилгексен-3

3. Формирование названия.  В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен, обозначающий принадлежность соединения к классу алкенов. Например:

3,4,4 - триметилпентен - 2

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов — газы; вещества состава С5Н10 — С16Н32 — жидкости; высшие алкены — твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения. Напомним, что отличительной чертой представителей непредельных углеводородов — алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов — платины, палладия, никеля:

гидрирование алкенов

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция — дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода).

пропен
Эта реакция подчиняется правилу Марковникова:
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

правило марковникова присоединение

правило марковникова
4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

этен

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

пропен пропанол2

Эта реакция протекает также в соответствии с правилом Марковникова — катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа — к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

этен полиэтилен
Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

горение алкенов
2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:

этандиол1,2

получение алкенов
правило зайцева

алкены номенклатура свойства

 




Группа 106.

Тема: Возникновение и развитие эволюционных представлений.


Теоретический материал для самостоятельного изучения

В исторической хронологии развития эволюционных идей в биологии выделяется четыре этапа.

Первый этап - появляются предпосылки к становлению эволюционной биологии, выделению основных направлений изучения эволюции (появляются такие теории, как самозарождение жизни, влияние условий среды на организмы). Основными мыслителями того времени являются Аристотель, Демокрит, Эмпедокл.

На втором этапе основной теорией происхождения и развития жизни на Земле была теологическая, божественная.

Третий этап характеризуется началом классификации живых организмов, где основным направлением становится систематика, выдвижением глобальных торий эволюции организмов и открытием новых законов. Основными мыслителями этого времени являются: Ламарк, Кювье, Бюффон, Линней, Дарвин, Мендель.

Жорж Луи Бюффон высказывал прогрессивные идеи об изменяемости видов под влиянием условий среды (климата, питания и т.д.), выдвинул теорию, о том, что человек произошел от обезьяны.

Жорж Кювье стал основателем сравнительной анатомии. Его теория выявляет взаимосвязь всех органов и структур между собой, а их строение и функционал ставит в зависимость от условий окружающей среды, питания, размножения.

Ламарк, продолжая идею Линнея о классификации организмов, выдвинул законы, из которых следует, что у живых организмов развиваются те органы, которые им более необходимы, а приобретенные улучшения наследуются.

Чарльз Дарвин, строя теорию эволюции, утверждал, что окружающий мир постоянно меняется, а уменьшение ресурсов и ограниченность доступа к ним приводит к борьбе за выживание, в результате остаются самые сильные организмы, которые способны дать сильное потомство - происходит естественный отбор.

На четвертом этапе для изучения теории эволюции предлагается синтетическая теория, включающая в себя положения теории эволюции Дарвина (естественный отбор) и генетику (механизм формирования вида).

При изменении условий окружающей среды организму необходимо к ним приспособиться, что провоцирует изменения на генном уровне. В процессе приспособления организмов к окружающей среде выживают наиболее устойчивые к условиям среды, наименее устойчивые погибают, происходит естественный отбор. Среди организмов идет как конкуренция, так и взаимопомощь (у некоторых видов).