понедельник, 21 марта 2022 г.

  ВТОРНИК, 22.03.22 г. 405, 308, 405 


ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО  НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ: 

СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И  НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ,  И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . ВНИМАНИЕ!!! На выполнение задания отводится 1 неделя. Моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

Критерии оценивания: Для получения отличной оценки обучающийся должен:- соблюдать отведенное время; разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.

ГРУППА 405 БИОЛОГИЯ  25,26

ТЕМА: Решение генетических задач.

От скрещивания комолого быка айширской породы с рогатыми коровами в первом поколении получили 18 комолых (безрогих) телят. Во втором поколении гибридов родилось 96 телят. Часть из них безрогие, а часть рогатые. Определите количество комолых телят во втором поколении и запишите ход скрещивания.

Решение: ген комолости доминирует над геном рогатости. Даже если нам это неизвестно – такой вывод можно сделать из условия задачи. В первом поколении наблюдается единообразие гибридов. А во втором происходит расщепление с проявлением признака, кодируемого рецессивным геном (второй закон Менделя). Делаем вывод о том, что ген комолости – доминантный, а ген, определяющий наличие рогов – рецессивный.
Записываем условие. Рогатые коровы могут иметь только один генотип – рецессивные гомозиготы. Комолые быки могут быть как гомозиготными, так и гетерозиготными. Но поскольку в первом поколении гибридов рецессивный признак не проявляется (18 телят – достаточное количество, чтобы это предположить с большой долей вероятности), значит мужская особь – доминантная гомозигота.
Гомозиготы дают по одному типу гамет.
В результате оплодотворения образуется единообразное потомство. 100% гетерозигот.

Скрещиваем между собой гибридов первого поколения. Родительские особи дают по два типа гамет. Для того, чтобы рассмотреть все варианты их слияния – построим решётку Пеннета. Помните? Женские гаметы записываются вертикально, а мужские горизонтально. Заполняем решётку.
Получаем расщепление по фенотипу в соотношении три к одному. Три части комолых и одна часть рогатых телят. Так как по условию, общее количество телят 96, то три части от этого количества составит 72 телёнка.

Если бы в условии задачи не было задания записать ход скрещивания, её можно было бы решить, опираясь только на второй закон Менделя. Согласно его формулировке во втором поколении гибридов наблюдается расщепление: три части особей с доминантным признаком и одна часть с рецессивным. Всё те же 72 телёнка.

Ответ: 72 телёнка.

Неполное доминирование.

Задача 1. У земляники красная окраска ягод неполно доминирует над белой. Какое потомство следует ожидать от скрещивания двух растений с розовыми ягодами? Запишите генотипы и фенотипы гибридов.

Решение: обозначим доминантный ген буквой А, а рецессивный – а. Отметим, что доминантные гомозиготы будут иметь красные ягоды, рецессивные гомозиготы – белые, а гетерозиготы – розовые.
Записываем ход скрещивания. Обе родительские формы – гетерозиготы. Так как по условию они имеют розовые ягоды. Гетерозиготы дают два типа гамет.
Строим решётку Пеннета. Определяем генотипы и фенотипы первого поколения гибридов. Обратите внимание, что при неполном доминировании (промежуточном характере наследования) расщепление по фенотипу совпадает с расщеплением по генотипу.

Ответ: 25 % доминантных гомозигот с красными ягодами, 50 % гетерозигот с промежуточной окраской плодов – розовой и 25 % рецессивных гомозигот с белыми ягодами. 

 ТЕМА: Контрольная работа №1                    https://rimmazosich.blogspot.com/p/blog-page_24.html
ТЕМА: Контрольная работа №1  

Задача 1. Дано: кареглазый мужчина женился на голубоглазой женщине. У них родился голубоглазый ребёнок. Определите генотипы родителей и вероятность рождения ребёнка с карими глазами.

Задача 2. Полидактилия у человека является доминантным признаком, а нормальное строение кистей рук – признак рецессивный. От брака мужчины, имеющего нормальное строение рук с гетерозиготной шестипалой женщиной, родились два ребёнка: пятипалый и шестипалый. Каков генотип этих детей?

ВЫПОЛНИТЕ ТЕСТЫ СНАЧАЛА НА БУМАГЕ, ЗАТЕМ В ЭЛЕКТРОННОМ ВИДЕ:  ТЕСТЫ

ГРУППА 405 ХИМИЯ 26

ТЕМА:Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы. 

ВОДА – РАСТВОРИТЕЛЬ. РАСТВОРЫ. НАСЫЩЕННЫЕ И НЕНАСЫЩЕННЫЕ РАСТВОРЫ. РАСТВОРИМОСТЬ ВЕЩЕСТВ В ВОДЕ

А ВИДЕЛ ЛИ КТО-НИБУДЬ ИЗ ВАС ВОДУ?

Вопрос показался вам нелепым? Но он относится к совершенно чистой воде, в которой нет никаких примесей. Если быть честным и точным в ответе, то придется сознаться, что такую воду ни я, ни вы пока не видели. Именно поэтому на стакане с водой после надписи «Н2О» стоит знак вопроса. Значит, в стакане не чистая вода, а что тогда?

В этой воде растворены газы: N2, O2, CO2, Ar, соли из почвы, катионы железа из водопроводных труб. Кроме того, в ней взвешены мельчайшие частицы пыли. Вот что мы называем ч и с т о й  в о д о й! Много ученых работает над решением трудной проблемы – получить абсолютно чистую воду. Но пока получить такую ультрачистую воду не удалось. Однако вы можете возразить, что есть дистиллированная вода. Кстати, что она собой представляет?

На самом деле мы получаем такую воду, когда стерилизуем банки перед консервированием. Переворачиваем банку вверх дном, помещаем ее над кипящей водой. На донышке банки появляются капельки, это и есть дистиллированная вода. Но как только мы перевернем банку, в нее заходят газы из воздуха, и снова в банке – раствор. Поэтому грамотные хозяйки стараются сразу после стерилизации заполнить банки нужным содержимым. Говорят, что продукты в этом случае будут храниться дольше. Возможно, они правы. Можете поэкспериментировать! Именно потому, что вода способна растворять в себе различные вещества, ученые не могут до сих пор получить идеально чистую воду в больших объемах. А она бы так пригодилась, например, в медицине для приготовления лекарств.

При­зна­ки рас­тво­ра:

1) рас­твор со­дер­жит два или более ком­по­нен­тов,

2) рас­твор – од­но­род­ная си­сте­ма, в ко­то­рой нет гра­ни­цы раз­де­ла ве­ществ.

Рас­твор может об­ра­зо­вать­ся не толь­ко при сме­ши­ва­нии жид­ко­го и твер­до­го ве­ще­ства. Неко­то­рые жид­ко­сти тоже могут об­ра­зо­вать рас­твор. На­при­мер, аце­тон и вода – две рас­тво­ри­мые друг в друге жид­ко­сти, при их пе­ре­ме­ши­ва­нии не видна гра­ни­ца раз­де­ла.

А вот бен­зин и вода рас­тво­ра не об­ра­зу­ют, т.к. нерас­тво­ри­мы друг в друге. Неко­то­рые твер­дые ве­ще­ства тоже могут об­ра­зо­вы­вать рас­тво­ры. На­при­мер, спла­вы ме­тал­лов – это од­но­род­ные смеси, их можно на­звать твер­ды­ми рас­тво­ра­ми.

Га­зо­об­раз­ные ве­ще­ства также могут рас­тво­рять­ся в жид­ко­стях. На­при­мер, вы зна­е­те, что рыбы дышат кис­ло­ро­дом, рас­тво­рен­ным в воде. Гра­ни­цы раз­де­ла между водой и со­дер­жа­щим­ся в ней кис­ло­ро­дом нет. Газы сме­ши­ва­ют­ся между собой все­гда. Но од­но­род­ные смеси газов не при­ня­то на­зы­вать рас­тво­ра­ми.

Це­мент и песок не рас­тво­ря­ют­ся друг в друге и воде, а зна­чит, между ними су­ще­ству­ют гра­ни­цы раз­де­лы. Т.е. стро­и­те­ли на­зы­ва­ют эту смесь рас­тво­ром услов­но.

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Рас­тво­ры могут об­ра­зо­вать:

- жид­кость и твер­дое ве­ще­ство;

- две жид­ко­сти;

- жид­кость и газ;

- два твер­дых ве­ще­ства.

Если в определённом объёме раствора содержится мало растворённого вещества, то такой раствор называют разбавленным, если много – концентрированным.

Насыщенный раствор – это раствор, в котором данное вещество при данной температуре больше не растворяется.

Ненасыщенный раствор - это раствор, в котором при данной температуре вещество ещё может растворяться.

Суспензией называют взвесь, в которой мелкие частицы твёрдого вещества равномерно распределены между молекулами воды.

Эмульсией называют взвесь, в которой мелкие капельки какой-либо жидкости распределены между молекулами другой жидкости.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества.

Концентрированные растворы - растворы с большим содержанием растворенного вещества.



 Источник жизни, одновременно самое распространенное и загадочное вещество на Земле – это вода. Именно о ней пойдет речь в данном уроке. 



Задание:

Распределите предложенные вещества - СO2 , H2, O2 ,H2SO4, уксус, NaCl,  мел, 

ржавчина, растительное масло, спирт , используя свой жизненный опыт.

Растворенное  вещество

Примеры веществ

Растворимые

Малорастворимые

Газ

Жидкость

Твердое вещество


ГРУППА 308 БИОЛОГИЯ 26

ТЕМАБионика как одно из направлений биологии и кибернетики

Бионика   —  одно  из  направлений  биологии  и  кибернетики,  изучающее  особенности  строения и  жизнедеятельности  организмов  в  целях  создания  более  совершенных  технических  систем  или  устройств,  характеристики  которых приближаются к характеристикам живых систем.

Датой рождения бионики считается  13 сентября  1960 г. 

В этот день открылся первый  международный  симпозиум  на  тему  «Живые  прототипы искусственных систем  — ключ к новой технике». 

Но и до официального  признания  бионика  как таковая  была  известна.  Изобретатели уже давно обращали внимание на различные явления природы,  закономерности  ее  развития  и  находили  правильные  решения  технических  задач. 

В  процессе последовательного,  беспощадного  естественного  отбора  природа тысячелетиями совершенствовала  свои  системы,  оттачивала  отдельные  органы животных. 

В жестокой борьбе за существование выживали и давали потомство только самые совершенные формы организмов. В итоге столь  продолжительной  эволюции  природа  создала  на  Земле  гигантскую  сокровищницу,  в  которой  не  счесть  изумительных  образцов «живых инженерных систем», функционирующих очень точно,  надежно  и  экономично,  отличающихся  поразительной  целесообразностью  и  гармоничностью действий,  способностью  реагировать на тончайшие изменения многочисленных факторов внешней  среды,  запоминать  и  учитывать  эти  изменения,  отвечать  на них многообразными приспособительными реакциями. У природы для  этого  было  много  времени,  а  человек,  создающий  современные машины, должен решать технические задачи за короткий срок,за  десятилетия,  даже  годы.

Многие  «изобретения»  природы  еще  в глубокой  древности  помогали решать ряд технических задач. Так, арабские врачи уже много сотен  лет  назад,  проводя  глазные  хирургические  операции,  получили  представление  о  преломлении  световых  лучей  при  переходе из  одной  прозрачной  среды  в  другую.  Изучение  хрусталика  глаза натолкнуло  врачей  древности  на  мысль  об  использовании  линз,изготовленных  из  хрусталя  или  стекла,  для  увеличения  изображения.

 

В  области  физики  изучение  многих  основных  принципов  учения об электричестве  было начато с  исследования так называемого животного электричества.  В  частности,  знаменитые опыты итальянского физиолога XVIII  в. Луиджи  Гальвани  с лапкой лягушки привели в конечном итоге  к созданию гальванических элементов —химических источников электрической энергии.

Луиджи Гальвани (1737-1798)

Еще  в  годы  Первой  мировой  войны  британский  флот  получилна  вооружение  гидрофоны  —  приборы  для  обнаружения  германских подводных лодок по шуму их винтов в воде.  Конструкция оказалась неудачной.  Во время хода судна гидрофоны не воспринимали  других  звуков,  так  как  все  заглушалось  шумом  машины  собственного корабля.  На помощь пришли зоологи. Они напомнили,что тюлени прекрасно слышат в  воде  при любой скорости,  и предложили придать гидрофонам форму ушной раковины тюленя. С тех пор  англичане  стали  более  успешно  бороться  с германскими  под­водными  лодками.

Стремление ученых понять,в  чем  природа  совершеннее,  умнее,  экономнее  современной  техники,  их  попытки  найти  и  систематизировать  новые  методы  для коренного  усовершенствования  существующих  и  создания  принципиально новых машин, приборов, строительных конструкций и технологических  процессов  и  породили  новое  научное  направление,  получившее  название  бионика.

Формы живого в природе и их промышленные аналоги.

Одной  из  основных  задач,  решаемых  бионикой,  является  исследование  принципов,  позволяющих достичь  высокой  надежности  биологических систем,  моделирование  компенсаторных функций  организмов и  их способностей  к адаптации.

Примером  высокой  надежности приспособительных механизмов у некоторых организмов  являются  особые  оболочки для  защиты  от действия  окружающей среды и  возможного нападения. 


 


 

 

 

 



 ПОНЕДЕЛЬНИК, 21.03.22 г.  403, 405, 308  

ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО  НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ: 

СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И  НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ,  И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . 

ВНИМАНИЕ!!!    На выполнение задания отводится 1 неделя. 

Моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

Критерии оценивания: Для получения отличной оценки обучающийся должен:- соблюдать отведенное время;- разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.

ГРУППА 403 ХИМИЯ 52,53

ТЕМА: Обратимость химических реакций. Обратимые и необратимые реакции. Реакции, идущие с образованием осадка, газа или воды.

Химическое равновесие и способы его смещения. 

   Реакции, идущие с образованием осадка, газа или воды.


Обратимые и необратимые химические реакции. Химическое равновесие и способы его смещения

ПОНЯТИЕ ПРЯМОЙ И ОБРАТНОЙ РЕАКЦИИ

Рассмотрим некоторую абстрактную реакцию, которую запишем в виде:

А+В→АВ, Прямая реакция. Но многие химические реакции могут идти в обратную сторону.

АВ А+В; Обратная реакция.

Для краткости такую реакцию записывают, используя две стрелки, одну – вперед, другую – назад.

А+ВАВ

При повышении температуры скорость большинства химических реакций увеличивается. Но оказывается, что в случае некоторых реакций продукт реакции при температуре, когда она идет с хорошей скоростью, уже начинает разлагаться. В частности, такая ситуация реализуется при взаимодействии водорода с йодом при получении йодоводорода.

НI2       (1)

Скорость химической реакции увеличивается с увеличением концентрации исходных веществ и соответственно уменьшается с уменьшением концентрации исходных веществ. Получается, что, по мере прохождения реакций, скорость прямой реакции будет уменьшаться, т. к. исходные вещества будут расходоваться. А скорость обратной реакции будет возрастать, потому что концентрация вещества АВ исходного для обратной реакции будет постепенно увеличиваться. До каких пор скорость прямой реакции будет уменьшаться, а обратной увеличиваться? Это будет до того момента, когда скорости прямой и обратной реакции станут равными. Наступит химическое равновесие. Рис. 1.

Рис. 1

Химическое равновесие – это состояние реакционной системы, в котором скорости прямой и обратной реакции равны.

КОНСТАНТА РАВНОВЕСИЯ

Равновесная концентрация веществ

Равновесная концентрация веществ – это концентрации веществ в реакционной смеси, находящихся в состоянии химического равновесия. Равновесная концентрация обозначается химической формулой вещества, заключенной в квадратные скобки.                                            

 Например, следующая запись обозначает,  что равновесная концентрация водорода в равновесной системе составляет 1 моль/л.

Рис. 2

Химическое равновесие  (Рис. 2) отличается от привычного для нас понятия «равновесие». Химическое равновесие – динамическое. В системе, находящейся в состоянии химического равновесия, происходят и прямая, и обратная реакции, но их скорости равны, и поэтому концентрации участвующих веществ не меняются. Химическое равновесие характеризуется константой равновесия, равной отношению констант скоростей прямой и обратной реакций.

Константы скорости прямой и обратной реакции – это скорости данной реакции при концентрациях исходных для каждой из них веществ в равных единицах. Также константа равновесия равна отношению равновесных концентраций продуктов прямой реакции в степенях стехиометрических коэффициентов к произведению равновесных концентраций реагентов. 

Если  , то в системе больше исходных веществ. Если  , то в системе больше продуктов реакции.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ

Если константа равновесия значительно больше 1, такую реакцию называют необратимой.

Необратимыми называются химические реакции, которые происходят только в одном направлении до полного расходования одного из реагентов.

Например, это реакция:                          

4Р+5О2 =2Р2О5                (2)

Обратимыми называются  химические реакции, которые осуществляются во взаимно противоположных направлениях при одних и тех же условиях.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СМЕЩЕНИЕ РАВНОВЕСИЯ

Если изменить внешние условия, то состояние химического равновесия нарушится. Смещение равновесия в зависимости от изменения внешних условий в общем виде определяется

· Принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывают воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведённого воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении.

Равновесие смещается вправо, если повысились равновесные концентрации продуктов прямой реакции. Если повышаются равновесные концентрации исходных веществ прямой реакции, то равновесие смещается влево. Какие факторы можно изменять, чтобы сместить равновесие? Это

· Температура

· Давление

· Концентрации веществ

· Добавление катализатора

· Изменение площади реакционной поверхности гетерогенных реакций

Добавление катализатора и изменение площади реакционной поверхности гетерогенных реакций не оказывают влияние на смещение химического равновесия.

Остальные факторы рассматриваем более детально.

Температура

Реакция синтеза аммиака (Рис. 3)

относится к экзотермическим реакциям. При прохождении прямой реакции теплота выделяется, а при прохождении обратной – поглощается. Если увеличить температуру, то, согласно правилу Ле Шателье, равновесие сместится в таком направлении, чтобы уменьшить это воздействие. В данном случае влево, так как теплота поглощается. Реакция синтеза аммиака проводится при температуре около 500

Если реакция эндотермическая, то повышение температуры приведет к смещению равновесия вправо.

Изменение концентрации веществ

При увеличении концентрации какого-либо из веществ, участвующих в равновесной реакции, равновесие реакции сместится в сторону его расходования, а соответственно, при уменьшении концентрации какого-либо из веществ – в сторону реакции его образования. Например, при увеличении концентрации азота в реакции синтеза аммиака, равновесие сместится вправо, т. е. в сторону расходования азота. Если же в этой реакции удалять из реакционной смеси аммиак, то равновесие сместится в сторону его образования. Сделать это можно, например, при растворении аммиака в воде.

Изменение давления

Изменение давления может оказывать влияние только на реакции с участием газообразных веществ. Если в реакции синтеза аммиака увеличить давление, равновесие сместится в сторону уменьшения числа моль газа. Если слева число моль газа больше, чем справа, равновесие сместится в сторону образования аммиака.

Если число моль газа одинаково и слева и справа, например, в реакции получения оксида азота (II),

N+O2      (3)

то изменение давления не будет оказывать влияние на положение химического равновесия в таких реакциях. Изучение химического равновесия имеет большое значение, как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. Окончательный выбор условий требует учета влияния их и на скорость процесса.

Подведение итога урока

На уроке была изучена тема «Химическое равновесие», рассмотрены условия смещения равновесия в случае обратимых реакций.


ГРУППА 405 ХИМИЯ 24,25

ТЕМА: Контрольная работа №1

1)Для приготовления насыщенного раствора поваренной соли надо в 100 г воды растворить 36 г хлорида натрия. Какое количество (моль) поваренной соли будет растворено в 360 г насыщенного раствора? Ответ запишите с точностью до десятых долей. АНАЛОГИЧНАЯ ЗАДАЧА (07.10)

ВЫПОЛНИТЕ ТЕСТЫ

ВЫПОЛНЕННЫЕ РАБОТЫ НА ДВОЙНОМ ЛИСТКЕ ПРИВЕЗЕТЕ С ПЕРВОЙ ВОЗМОЖНОСТЬЮ, А ФОТООТЧЕТЫ ЖДУ НА ПОЧТУ (СМ. ВВЕРХУ)

ТЕМА: Вода. Растворы. Растворение. Вода как растворитель.

Растворы. Как происходит растворение. Насыщенные растворы

Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода, в которую были добавлены кристаллы, приобретает новые свойства: у нее появляется соленый или сладкий вкус (в случае марганцовки появляется малиновая окраска), изменяется плотность, температура замерзания и т.д. Полученные жидкости уже нельзя назвать водой, даже если они неотличимы от воды по внешнему виду (как в случае с солью и сахаром). Это – растворы.

Растворы не отстаиваются и сохраняются все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцовокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул или ионов.

Растворами называются гомогенные (т.е. однородные) смеси переменного состава из двух или более веществ. Наиболее распространенное агрегатное состояние растворов – жидкое.

Под переменным составом раствора понимают то простое обстоятельство, что соотношение смешанных друг с другом веществ может непрерывно изменяться в определенных пределах. Например, раствор соли можно разбавлять чистой водой или, наоборот, упаривать, но полученные при этом жидкости в любом случае будут называться растворами соли. Приведнное выше определение не охватывает всех свойств растворов, поэтому в конце параграфа мы его уточним.

Любой раствор состоит из растворителя и растворенного вещества:

Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.

Не всегда обязательно вода является растворителем – существуют и неводные растворы. Однако когда речь идет о водных растворах, воду считают растворителем и в тех случаях, когда ее меньше. Например, говорят о 96%-ном растворе этилового спирта в воде, а не о 4 %-ном растворе воды в спирте.

** Существуют растворы не только жидкие, но и твердые. В твердых растворах частицы одного вещества хаотично распределены среди частиц какого-нибудь другого, но обязательно твердого вещества. Например, водород охотно растворяется в некоторых металлах (платине, палладии), и это пример твердого раствора. Смеси газов (например, воздух) не называют растворами. Дело в том, что важным свойством растворов является заметное взаимодействие между частицами растворителя и растворенных веществ, а в газах такое взаимодействие практически отсутствует.

Давайте разберемся в том, как происходит растворение веществ. Для этого понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.

Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды межмолекулярные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 7-2).

Рис. 7-2. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки). Между молекулами сахара и воды возникают межмолекулярные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.

Молекулы сахара, перешедшие из кристалла в раствор, могут передвигаться по всему объему раствора вместе с молекулами воды благодаря тепловому движению. Это явление называется диффузией. Диффузия происходит медленно, поэтому около поверхности кристаллов находится избыток уже оторванных от кристалла, но еще не диффундировавших в раствор молекул сахара. Они мешают новым молекулам воды подойти к поверхности кристалла, чтобы связаться с его молекулами водородными или другими межмолекулярными связями. Если раствор перемешивать, то диффузия происходит интенсивнее и растворение сахара идет быстрее. Молекулы сахара распределяются равномерно и раствор становится одинаково сладким по всему объему. При растворении перманганата калия диффузию частиц в растворе можно наблюдать визуально благодаря интенсивной малиновой окраске этого вещества.

Растворение веществ можно сравнить с перетаскиванием мебели. Представьте, что на время ремонта школьные столы (или парты) составили в спортзале в строгом порядке аккуратным штабелем. Этот упорядоченный штабель является моделью кристаллического вещества, а каждый стол – как бы "молекулой" такого вещества. После окончания ремонта учеников попросили помочь перетащить столы. В спортзал вбежала ватага учеников (эта ватага не что иное, как растворитель, а каждый ученик  молекула растворителя), кто-то залез наверх, кто-то тянет столы снизу – короче, работа закипела. Очень скоро столы, каждый из которых несут где двое, а где четверо ребят, оказываются в разных концах школы, а от штабеля в спортзале не остается и следа.


Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него  идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается.


ГРУППА 308 ХИМИЯ 54,55

ТЕМА: Особенности размещения электронов по орбиталям в атомах малых и больших периодов.

ТЕМА: Энергетические уровни, подуровни. Связь периодического закона и периодической системы химических элементов с теорией строения атомов. Короткий и длинный варианты таблицы химических элементов.

Атомная орбиталь

Все химические свойства веществ, то есть способность вступать в химические реакции, определяются строением электронных оболочек атомов. Электрон — главная элементарная частица для химии, так как именно благодаря обмену электронами могут образовываться новые химические соединения. Электрон — уникальная элементарная частица: обладая свойствами, отличающими его от всех других частиц, он одновременно является и частицей, и волной. Говоря научным языком, имеет двойственную природу. С одной стороны, обладая малой массой (почти в 2 тыс. раз меньше, чем масса протона и нейтрона), электрон проявляет свойства частицы. С другой стороны, электрон движется с такой высокой скоростью, что фактически «размазан» по атому, он находится не в одной конкретной точке, а образует «электронное облако». В этой области  пространства электронная плотность достаточно велика. Этим объясняются волновые свойства электрона. Дуализм электрона подтверждается экспериментально. Так, например, для потока электронов, как и для световых волн, характерны явления интерференции (наложения) и дифракции (огибание препятствия). 

Определение

Атомная орбиталь — это область пространства, в которой вероятность нахождения  электрона максимальна.

На каждой орбитали могут максимально размещаться два электрона, обладающие равной энергией, но отличающиеся особым свойством, спином.

Если очень условно уподобить электрон детской игрушке — волчку, то электроны с разными спинами будут соответствовать волчкам, вращающимся в разные стороны. Графически орбиталь принято изображать в виде квадрата, а электроны — в виде стрелок, направленных вверх или вниз. Стрелки, направленные в противоположные стороны, означают электроны с двумя противоположными спинами.

Электронные орбитали имеют определенную форму и энергию. Ряд орбиталей, обладающих равной или близкой энергией, образует энергетический уровень (слой). Номер уровня обозначают числом (n = 1, 2, 3…) или заглавной латинской буквой (K, L, M и дальше по алфавиту). Различают первый (n = 1 или K), второй (n = 2 или L), третий (n = 3 или M) и т. д. энергетические уровни, вплоть до бесконечности (  означает, что электрон улетает из атома, и атом превращается в ион). Уровень с номером n включает ровно  орбиталей, на которых может разместиться максимально  электронов. Номер энергетического уровня  называют главным квантовым числом.

Таким образом, на первом энергетическом уровне могут максимально находиться 2 электрона, на втором — 8, на третьем — 18 и т. д.

Формы атомных орбиталей

Каждый энергетический уровень делится на энергетические подуровни, которые образованы орбиталями, имеющими одинаковую форму и равную энергию. По форме различают s-, p-, d- и f-орбитали. s-орбитали имеют форму шара, иными словами, электрон, находящийся на такой орбитали (его называют s-электроном), большую часть времени проводит внутри сферы. s-орбиталь, находящуюся на первом энергетическом уровне, обозначают 1s, на втором — 2s и т. д.

р-орбитали имеют форму объемной восьмерки (см. рис. б и в). Следует подчеркнуть, что любая орбиталь является объемной. Они могут быть направлены по одной из трех координатных осей (обозначаются ,), поэтому на каждом энергетическом уровне (кроме первого, где есть только s-орбиталь) существуют три р-орбитали, обладающие одинаковой энергией. Формы d- и f-орбиталей намного сложнее. На рисунке видно, что существует 5 форм d-орбиталей и 7 форм f-орбиталей. На каждой из орбиталей, как вы помните, могут размещаться не более двух электронов, следовательно, s-подуровень максимально вмещает 2 электрона, p — 6, d — 10, f — 14.

 

Орбитали одной и той же формы, но находящиеся на разных энергетических уровнях (например, 1s, 2s и 3s-орбитали), отличаются по энергии. Чем больше номер уровня, тем выше энергия орбитали и тем больше ее размер.

Рассмотрим три первых энергетических уровня. На первом уровне (n = 1) есть только 1s-подуровень (одна 1s-орбиталь), на котором максимально могут находиться два электрона (2 = 2×1). Второй энергетический уровень включает два подуровня: 2s- подуровень (одна 2s- орбиталь) и 2p-подуровень (три 2p-орбитали), всего четыре орбитали, на которых может находиться до 8 электронов (8 = 2×22). В состав третьего уровня (максимально 18 электронов) входят три подуровня: 3s- (одна орбиталь), 3p- (три орбитали) и 3d- (пять орбиталей), всего 9 орбиталей, содержащих не более 18 электронов (18 = 2×32).

Номер энергетического уровня (n)Подуровни и их схематичное изображениеМаксимальное число электронов на энергетическом уровне ()
s-p-d-f-
1    2
2   8
3    18
4    32

 

Электроны занимают уровни и орбитали последовательно, в порядке увеличения энергии. Сначала заполняется первый энергетический уровень, после его завершения — второй и т. д. 

Принципы построения электронной конфигурации элемента

Количество электронов в атоме элемента равно его порядковому номеру.

Количество энергетических уровней атома равно номеру периода, в котором расположен элемент.

Количество электронов на внешнем (валентном) уровне равно номеру группы, в которой расположен элемент.

При более подробном описании электронной конфигурации рассматривают не только количество электронов на данном энергетическом уровне, но и их распределение по подуровням. 

Разместим уже известные нам орбитали на энергетической диаграмме. Каждую незаполненную орбиталь мы обозначим пустым квадратиком (вертикальная ось показывает направление возрастания энергии).

Для полного описания электронного строения атома надо знать, как именно распределены электроны по энергетическим уровням. Перечень энергетических уровней, заполненных электронами, называют электронной конфигурацией атома.

При заполнении орбиталей электронами используют следующие правила.

  1. Принцип минимума энергии

    Орбитали заполняются в порядке увеличения энергии, снизу вверх. Каждый электрон располагается так, чтобы его энергия была минимальной, т. е. среди свободных орбиталей он выбирает орбиталь с самой низкой энергией.

    Порядок заполнения энергетических подуровней (см. рис.) можно запомнить в виде ряда: 
                     1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s….

  2. Принцип Паули

    На каждой орбитали может находиться не более двух электронов.  Если два электрона находятся на одной орбитали, то они обладают противоположными спинами (стрелки направлены в разные стороны). Такие электроны называют спаренными. Если на орбитали находится только один электрон, то его называют неспаренным.

  3. Правило Хунда (Гунда)

    Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.

Обратите внимание, что 4s-орбиталь обладает меньшей энергией, чем  3d-орбиталь. Это означает, что в первую очередь электроны заполнят 4s-подуровень и лишь затем 3d-подуровень. Для удобства запоминания порядка заполнения энергетических подуровней лучше воспользоваться следующей схемой: в каждой отдельной строке написать возможные типы орбиталей для каждого уровня, провести стрелки под углом 45 и «расселять» электроны по подуровням, ориентируясь по стрелкам сверху вниз.

Запись электронной конфигурации атома

Подробные электронные конфигурации атомов изображают двумя способами:

  1. графически, с помощью квадратиков со стрелками (часто называют энергетическими диаграммами);
  2. в строчку, когда перечисляются все занятые энергетические подуровни с указанием общего числа электронов на каждом из них.

Рассмотрим порядок заполнения электронами энергетических уровней, воспользовавшись периодической системой. Число электронов в атоме элемента, как вы помните, равно заряду его ядра, а следовательно, и порядковому номеру элемента в периодической системе. Так, например, в атоме водорода (N = 1) содержится всего один электрон, а в атоме кислорода (N = 8) — восемь. В каждом периоде периодической системы электронная оболочка атома каждого последующего элемента повторяет строение электронной оболочки предыдущего элемента с добавлением одного электрона.

Число заполненных энергетических уровней в атоме равно номеру периода, в котором расположен элемент.

Электронные конфигурации некоторых элементов 

Первый энергетический уровень вмещает максимально два электрона. Поэтому первый период состоит лишь из двух элементов — водорода и гелия. Простейший из атомов — водород, H. Он содержит один электрон, который занимает орбиталь с самой низкой энергией — 1s-орбиталь. Электронная конфигурация атома водорода. В атоме гелия первый энергетический уровень полностью завершен.

 У элементов второго периода начинается заполнение второго энергетического уровня — он включает восемь электронов (n = 2, N = 8). Второй период содержит восемь элементов. У неона, элемента, завершающего второй период, первый и второй энергетические уровни оказываются целиком заполненными.

В третьем периоде происходит заполнение третьего энергетического уровня. Третий уровень (n = 3) может максимально вмещать 18 электронов. Однако элементов в третьем периоде всего восемь. К концу третьего периода (у аргона) полностью заполняются 3s- и 3p-подуровни, а 3d-подуровень остается пустым, поэтому третий уровень не заполняется до конца.

В четвертом периоде у первых двух элементов (калия и кальция) электроны идут на четвертый энергетический уровень (4s-подуровень), а затем у последующих десяти элементов (от скандия до цинка) завершается заполнение третьего энергетического уровня (3d-подуровня).

 

Определение

Элементы, в атомах которых происходит заполнение предвнешнего энергетического уровня, называют переходными.

Такие элементы расположены в побочных подгруппах периодической системы. Начиная с элемента галлия заполнение четвертого уровня продолжается. 

Химические свойства элементов определяются не всеми электронами, а только внешними, обладающими наибольшей энергией.

Внешние электроны называют валентными, и их количество, как правило, равно номеру группы, в которой расположен элемент.

Их атом может отдавать в результате химических реакций, они обуславливают его химические свойства. У элементов главных подгрупп валентными являются электроны внешнего энергетического уровня. Число валентных электронов равно номеру группы, в которой находится элемент. Например, водород, натрий и калий, расположенные в первой группе, имеют по одному валентному электрону, а элементы четвертой группы — углерод и кремний — по четыре. Как вы помните, элементы, входящие в одну и ту же подгруппу, обладают сходными химическим свойствами. Это объясняется тем, что они имеют сходные электронные конфигурации, т. е. являются электронными аналогами. Полностью завершенные внутренние энергетические уровни не оказывают существенного влияния на химические свойства.  

Элементы, в атомах которых валентные электроны расположены на  s-подуровне, называют  s-элементами, p-подуровне — p-элементами, d-подуровне — d-элементами, а f-подуровне — f-элементами

s-элементы расположены в начале периодов, а р-элементы — в конце. В короткопериодном варианте периодической системы f-элементы (лантаноиды и актиноиды) вынесены за пределы таблицы. Малые периоды и главные подгруппы состоят лишь из s- и р-элементов. Все d- и f-элементы расположены в побочных подгруппах. 

В длиннопериодном варианте s-, p-, d- и f-элементы занимают отдельные поля.

Именно конфигурация валентных электронов определяет то, является ли элемент металлом или неметаллом, с какими другими элементами он может взаимодействовать и какова его валентность. При заполнении орбиталей электронами конфигурация валентных электронов периодически повторяется, что приводит к периодическому изменению химических свойств элементов. 

Пример

Записать электронную конфигурацию и энергетическую диаграмму атома серы, указав распределение электронов по уровням и подуровням. 

Решение

 

«Проскок» или «провал» электрона

У атомов  Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au  имеет место «провал» электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома. Например, электронная формула атома меди, исходя из вышенаписанного, должна иметь вид: Cu . Однако в действительности один из двух 4s-электронов «проваливается» на 3d-подуровень, и атом меди имеет следующую конфигурацию: 

 

 

Для элементов IБ-подгруппы характерна конфигурация внешнего слоя: .

Для элементов Cr и Mo характерна конфигурация внешнего слоя: .

Особо следует отметить палладий, у которого «проваливаются» два электрона:  

Возбужденное состояние атома

Все электронные конфигурации, о которых мы говорили выше, являются конфигурациями с наименьшей  энергией и соответствуют основному состоянию атома.

Получив энергию извне (облучение или нагревание системы), один либо несколько электронов могут переходить на более высокий энергетический подуровень.

Определение

Состояние атома, при котором электрон из электронной пары с предыдущего подуровня «распаривается» и переходит на следующий подуровень, называется возбужденным состоянием атома.

Возбужденное состояние атома является неустойчивым, и через некоторое время электрон теряет энергию, перейдя на энергетическую орбиталь с меньшей энергией, испустив при этом квант света.

Определение

Состояние, которое требует для повышения энергии электрона наименьших энергетических затрат, называют первым возбужденным состоянием. Состояние, при котором все валентные электроны являются неспаренными, называют максимально возбужденным состоянием.

Например, для атома хлора возможны три возбужденных состояния, обозначенные на рисунке как Cl*, Cl**, Cl***, причем последнее является максимально возбужденным состоянии меняется число валентных электронов и, соответственно, возможная степень окисле