четверг, 17 ноября 2022 г.

17.11.22 г. ЧЕТВЕРГ. 306, 405, 303

  17.11.22 г. ЧЕТВЕРГ. 306, 405, 303

Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи (ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения.)

Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 306 БИОЛОГИЯ 13,14

ТЕМА 13,14:  Обмен веществ.Фотосинтез.

ПРОЧИТАЙТЕ, РАССМОТРИТЕ РИСУНКИ, СОЗДАЙТЕ КРАТКИЙ КОНСПЕКТ,МОЖНО ЧЕРТИТЬ СХЕМЫ,ГДЕ ЭТО НАДО.

Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Клетка постоянно находится в движении – цитоплазма перемещается, увлекая за собой органоиды и включения, активно работают рибосомы и митохондрии, совершается множество химических превращений. Все живые организмы, существующие на Земле, представляют собой открытые системы, характеризующиеся способностью активно обмениваться с окружающей средой веществами и энергией. Из окружающей среды в клетку поступают различные вещества, а из клетки в окружающую среду удаляются ненужные продукты обмена – происходит обмен веществ, или метаболизм (Рис. 1).

Обмен веществ клетки с окружающей средой

Рис. 1. Обмен веществ клетки с окружающей средой (Источник)

Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли.

Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки – мономеры и направляются во все клетки организма (Рис. 2). Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и так далее).

Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы.

Распределение органических веществ

Рис. 2. Распределение органических веществ 

Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоупорядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей.

Обмен веществ (метаболизм) – совокупность биохимических реакций, протекающих в клетке и обеспечивающих процессы ее жизнедеятельности.

В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты.

В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

Анаболизм (ассимиляция) – совокупность химических процессов, направленных на образование и обновление структурных частей клеток, этот процесс имеет второе название – пластический обмен.

Фотосинтез: 6Н2О + 6СО2 → С6Н12О+ 6СО2 ↑

Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ. Анаболизм является созидательным этапом обмена веществ, он всегда осуществляется с потреблением энергии и с участием ферментов.

Катаболизм (диссимиляция) – совокупность реакций, в которых происходит распад крупных органических молекул до простых соединений с одновременным высвобождением энергии.

Катаболизм обеспечивает энергией все процессы, протекающие в клетке, и имеет второе название – энергетический обмен.

Дыхание: С6Н12О+ 6СО2 → 6Н2О + 6СО2 + АТФ

При разрыве химических связей молекул органические соединения энергии высвобождаются и запасаются главным образом в виде молекул аденозинтрифосфорной кислоты – АТФ, универсального источника энергии у всех живых организмов (Рис. 3).

Строение молекулы АТФ

Рис. 3. Строение молекулы АТФ 

По своей химической природе АТФ является мононуклеотидом и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргическими связями. Выделение энергии в клетке происходит при отделении одного из фосфорных остатков от молекулы АТФ, разрыв этой связи высвобождает 7,3 килокалории, тогда как при разрыве химических связей других соединений энергии выделяется в три-четыре раза меньше. При этом образуется молекула аденозиндифосфата – АДФ, с двумя фосфорными остатками. Она легко может восстановиться до АТФ, присоединив один остаток фосфорной кислоты или отдать еще один фосфорный остаток и превратиться в аденозинмонофосфат – АМФ (Рис. 4).

Выработка энергии в клетке

Рис. 4. Выработка энергии в клетке 

Переход АТФ в АДФ и обратно – это основной механизм выработки энергии в клетке. Отщепление от АТФ и АДФ фосфорного остатка приводит к выделению энергии, а присоединение к АМФ и АДФ фосфорного остатка приводит к накоплению энергии.

ТЕМА:ФОТОСИНТЕЗ.

Фотосинтез – это процесс образования органических веществ в зелёных растениях. Фотосинтез создал всю массу растений на Земле и обогатил атмосферу кислородом.

КАК ПИТАЕТСЯ РАСТЕНИЕ?

Раньше люди были уверены, что все вещества для своего питания растения берут из почвы. Но один опыт показал, что это не так.

В горшок с землёй было посажено дерево. При этом измерили массу и земли, и дерева. Когда через несколько лет снова взвесили то и другое, оказалось, что масса земли уменьшилась всего на несколько граммов, а масса растения увеличилась на много килограмм.

В почву вносили только воду. Откуда же взялись эти килограммы растительной массы?

Из воздуха. Все органические вещества растений созданы из углекислого газа атмосферы и почвенной воды.

ЭНЕРГИЯ

Животные и человек питаются растениями, чтобы получить энергию для жизни. Эта энергия содержится в химических связях органических веществ. Откуда она там?

Известно, что растение не может нормально расти без света. Свет и является энергией, с помощью которой растение строит органические вещества своего тела.

Не важно какой это свет, солнечный или электрический. Любой луч света несёт энергию, которая становится энергией химический связей и как клей удерживает атомы в больших молекулах органических веществ.

ГДЕ ИДЁТ ФОТОСИНТЕЗ

Фотосинтез проходит только в зелёных частях растений, а точнее, в особых органах растительных клеток – хлоропластах.




Рис. 1. Хлоропласты под световым микроскопом.

Хлоропласты являются разновидностью пластид. Они всегда зелёные, т. к. содержат вещество зелёного цвета – хлорофилл.

Хлоропласт отделён от остального объёма клетки мембраной и имеет вид зёрнышка. Внутреннее пространство хлоропласта называется стромой. В ней и начинаются процессы фотосинтеза.



Рис. 2. Внутреннее строение хлоропласта.

Хлоропласты являются как бы фабрикой, на которую поступает сырьё:

  • углекислый газ (формула – СО₂);
  • вода (Н₂О).

Вода поступает из корней, а углекислый газ – из атмосферы через особые отверстия в листьях-устьица. Свет является энергией для работы фабрики, а полученные органические вещества – продукцией.

Сначала производятся углеводы (глюкоза), но впоследствии из них образуется множество веществ разнообразных запахов и вкусов, которые так любят животные и люди.

Из хлоропластов полученные вещества транспортируются в разные органы растения, где откладываются в запас, либо используются для процессов жизнедеятельности.

РЕАКЦИЯ ФОТОСИНТЕЗА

В общем виде уравнение фотосинтеза выглядит так:

СО₂(углекислый газ) + Н₂О(вода) = органические вещества(глюкоза) + О₂ (кислород)

Зелёные растения входят в группу автотрофов (в переводе – «сам питаюсь») – организмов, которым для получения энергии не нужны другие организмы.

Основная функция фотосинтеза – создание органических веществ, из которых строится тело растений.

Выделение кислорода – побочный эффект процесса.

ЗНАЧЕНИЕ ФОТОСИНТЕЗА

Роль фотосинтеза в природе чрезвычайно велика. Благодаря ему создан весь растительный мир и озоновый экран нашей планеты.




Рис. 3. Фотосинтез.

Благодаря фотосинтезу растения:

  • являются источником кислорода для атмосферы;
  • переводят энергию солнца в доступную для животных и человека форму.

Жизнь на Земле стала возможной при накоплении достаточного количества кислорода в атмосфере. Ни человек, ни животные не смогли бы жить в те далёкие времена, когда его не было, или было мало.

КАКАЯ НАУКА ИЗУЧАЕТ ПРОЦЕСС ФОТОСИНТЕЗА

Фотосинтез изучают разные науки, но больше всего ботаника и физиология растений.

Ботаника – это наука о растениях и, поэтому изучает его как важный жизненный процесс растений.

Наиболее подробно изучает фотосинтез физиология растений. Учёные-физиологи определили, что этот процесс сложный и имеет стадии:

  • световую;
  • темновую.

Это значит, что фотосинтез начинается на свету, но заканчивается в темноте.

Заключение

 ГРУППА 405 ЭКОЛОГИЯ 28,29

ТЕМА 28,29 :  СОВРЕМЕННОЕ СОСТОЯНИЕ И ОХРАНА НЕДР.

ОТКРОЙТЕ УЧЕБНИК ЭКОЛОГИИ (это ссылка на электронный учебник.)  ПАРАГРАФ 37- ЧИТАТЬ,  СТР.253, ВОПРОС 1 ПИСЬМЕННО ОТВЕТИТЬ И ПРИСЛАТЬ. 

 ГРУППА 405 ХИМИЯ 35

ТЕМА 35 : Карбоновые кислоты. Понятие о карбоновых кислотах. Карбоксильная группа как функциональная. Гомологический ряд предельных однооснóвных карбоновых кислот. Получение карбоновых кислот окислением альдегидов.

Карбоновые кислоты - органические вещества, молекулы которых содержат одну или несколько карбоксильных групп.


Карбоксильная группа  (сокращенно —COOH) - функциональная группа карбоновых кислот - состоит из карбонильной группы и связанной с ней гидроксильной группы.

По числу карбоксильных групп карбоновые кислоты делятся на одноосновные, двухосновные и т.д.

Общая формула одноосновных карбоновых кислот R—COOH. Пример двухосновной кислоты - щавелевая кислота HOOC—COOH.

По типу радикала карбоновые кислоты делятся на предельные (например, уксусная кислота CH3COOH), непредельные [например, акриловая кислота CH2=CH—COOH, олеиновая CH3—(CH2)7—CH=CH—(CH2)7—COOH] и ароматические (например, бензойная C6H5—COOH).

Изомеры и гомологи

Одноосновные предельные карбоновые кислоты R—COOH являются изомерами сложных эфиров  (сокращенно R'—COOR'') с тем же числом атомов углерода. Общая формула и тех, и других CnH2nO2.

г

о

м

о

л

о

г

и
HCOOH
метановая (муравьиная)
CH3COOH
этановая (уксусная)
HCOOCH3
метиловый эфир муравьиной кислоты
CH3CH2COOH
пропановая (пропионовая)
HCOOCH2CH3
этиловый эфир муравьиной кислоты
CH3COOCH3
метиловый эфир уксусной кислоты
CH3(CH2)2COOH
бутановая (масляная)

2-метилпропановая
HCOOCH2CH2CH3
пропиловый эфир муравьиной кислоты
CH3COOCH2CH3
этиловый эфир уксусной кислоты
CH3CH2COOCH3
метиловый эфир пропионовой кислоты
и з о м е р ы

Алгоритм составления названий карбоновых кислот

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, включающая атом углерода карбоксильной группы.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс "-ов", окончание "-ая" и слово "кислота".

В молекулах карбоновых кислот p-электроны атомов кислорода гидроксильной группы взаимодействуют с электронами -связи карбонильной группы, в результате чего возрастает полярность связи O—H, упрочняется -связь в карбонильной группе, уменьшается частичный заряд (+) на атоме углерода и увеличивается частичный заряд (+) на атоме водорода.

Последнее способствует образованию прочных водородных связей между молекулами карбоновых кислот.

Физические свойства предельных одноосновных карбоновых кислот в значительной степени обусловлены наличием между молекулами прочных водородных связей (более прочных, чем между молекулами спиртов). Поэтому температуры кипения и растворимость в воде у кислот больше, чем у соответствующих спиртов.

Химические свойства кислот

Упрочнение -связи в карбонильной группе приводит к тому, что реакции присоединения для карбоновых кислот нехарактерны.

  1. Горение:
    CH3COOH + 2O2  2CO2 + 2H2O


  2. Кислотные свойства.
    Из-за высокой полярности связи O-H карбоновые кислоты в водном растворе заметно диссоциируют (точнее, обратимо с ней реагируют):

    HCOOH  HCOO- + H+ (точнее HCOOH + H2 HCOO- + H3O+)

    Все карбоновые кислоты - слабые электролиты. С увеличением числа атомов углерода сила кислот убывает (из-за снижения полярности связи O-H); напротив, введение атомов галогена в углеводородный радикал приводит к возрастанию силы кислоты. Так, в ряду

    HCOOH  CH3COOH  C2H5COOH

    сила кислот снижается, а в ряду

    CH3COOHCH2ClCOOHCHCl2COOHCCl3COOH
    уксусная кислотамонохлоруксусная кислотадихлоруксусная кислотатрихлоруксусная кислота

    - возрастает.

    Карбоновые кислоты проявляют все свойства, присущие слабым кислотам:

    Mg + 2CH3COOH  (CH3COO)2Mg + H2
    CaO + 2CH3COOH  (CH3COO)2Ca + H2O
    NaOH + CH3COOH  CH3COONa + H2O
    K2CO3 + 2CH3COOH  2CH3COOK + H2O + CO2

  3. Этерификация (реакция карбоновых кислот со спиртами, приводящая к образованию сложного эфира):
    + H2O
    муравьиная кислотаэтанолэтиловый эфир
    муравьиной кислоты

    В реакцию этерификации могут вступать и многоатомные спирты, например, глицерин. Сложные эфиры, образованные глицерином и высшими карбоновыми кислотами (жирными кислотами) - это жиры.

    ++ 3H2O
    глицеринкарбоновые кислотытриглицерид


    Жиры представляют собой смеси триглицеридов. Предельные жирные кислоты (пальмитиновая C15H31COOH, стеариновая C17H35COOH) образуют твердые жиры животного происхождения, а непредельные (олеиновая C17H33COOH, линолевая C17H31COOH и др.) - жидкие жиры (масла) растительного происхождения.

  4. Замещение в углеводородном радикале:
    CH3—CH2—COOH+ Cl2CH3—CHCl—COOH+ HCl
    пропионовая кислота-хлорпропионовая кислота

    Замещение протекает в -положение.

    Особенность муравьиной кислоты HCOOH состоит в том, что это вещество - двуфункциональное соединение, оно одновременно является и карбоновой кислотой, и альдегидом:

    Поэтому муравьиная кислота кроме всего прочего реагирует и с аммиачным раствором оксида серебра (реакция серебряного зеркала; качественная реакция):
    HCOOH + Ag2O(аммиачный раствор)  CO2 + H2O + 2Ag

Получение карбоновых кислот

  1. Окисление альдегидов.
    В промышленности: 2RCHO + O2  2RCOOH

    Лабораторные окислители: Ag2O, Cu(OH)2, KMnO4, K2Cr2O7 и др.

  2. Окисление спиртов: RCH2OH + O2  RCOOH + H2O

  3. Окисление углеводородов: 2C4H10 + 5O2  4CH3COOH + 2H2O

  4. Из солей (лабораторный способ): CH3COONaкр. + H2SO4 конц.  CH

ГРУППА 303 ЭКОЛОГИЯ 15

ТЕМА 15   Дифференцированный зачёт. (ПРОДОЛЖЕНИЕ)

Выполните тест, в конце теста знак "отправить"











 

ГРУППА 506 ХИМИЯ 19,20

Тема 19:Агрегатные состояния веществ и водородная связь. Твердое, жидкое и газообразное состояния веществ. Переход вещества из одного агрегатного состояния в другое. Водородная связь.

Водородная связь. Образование водородной связи обусловлено спецификой водорода как элемента, атом которого состоит из протона и электрона. В соединениях водорода с атомами более электроотрицательных элементов на атоме водорода возникает частичный положительный заряд. Такой атом может взаимодействовать с неподеленными парами электронов атома электроотрицательного элемента соседней молекулы, в результате между молекулами возникает дополнительная межмолекулярная связь.

Водородная связь – это связь, которая образуется между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом сильно электроотрицательного элемента другой молекулы.

Чем больше электроотрицательность атома, с которым соединяется атом водорода, тем больше энергия водородной связи.

Водородная связь наиболее характерна для соединений фтора и кислорода, менее для соединений – азота. Образование водородной связи приводит к ассоциации (соединению) молекул.

Рассмотрим образование водородной связи между двумя молекулами воды. В молекуле воды связь О-Н сильно полярная. На атоме кислорода сосредоточен отрицательный заряд, а на атомах водорода – положительный. Это приводит к притяжению атома водорода одной молекулы воды к атому кислорода другой молекулы – возникает водородная связь.

В кристаллах льда, снега каждая молекула воды связана водородными связями с четырьмя соседними – за счет атомов водорода и двух неподеленных электронных пар атома кислорода. Следовательно, образование водородной связи обусловлено как электростатическим, так и донорно-акцепторным взаимодействием. В результате образуется ажурная (с большими пустотами) структура льда. Из-за этого плотность льда меньше, чем плотность воды.

Способностью к ассоциации обладают молекулы как неорганических, так и органических соединений (вода, аммиак, спирты и др.)

Водородная связь как и ковалентная, имеют направленность в пространстве и насыщаемость.

Длина водородной связи больше длины обычной ковалентной связи, энергия – в 10-20 раз меньше. В связи с этим водородные связи малоустойчивы и довольно легко разрываются (например, при таянии льда и кипении воды). Но на разрыв этих связей требуется дополнительная энергия, поэтому температуры плавления и кипения веществ, в которых молекулы ассоциированы, оказываются выше, чем у подобных веществ, но без водородных связей. Например, между молекулами фтороводорода и воды образуются водородные связи, а между молекулами хлороводорода и сероводорода – практически нет.

Водородная связь служит причиной некоторых важных особенностей воды – вещества, которое играет огромную роль в процессах, протекающих в живой и неживой природе. Она в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты, а поэтому имеет большое значение в химии жизненных процессов.


3. Газообразные, жидкие и твердые вещества.

Из курса физики и повседневной жизни вам известно, что в зависимости от условий окружающей среды, и в первую очередь от температуры и давления, вещества могут находиться в одном из трех основных агрегатных состояний: газообразном, жидком и твердом. Каждое агрегатное состояние отличается от другого расположением частиц друг относительно друга и характером их движения. При переходе вещества из одного состояния в другое состав его частиц не изменяется, изменяется лишь их взаимное расположение.

Газообразное состояние. В газообразном состоянии вещество не имеет собственной формы и объема. Оно занимает весь предоставленный ему объем и принимает форму сосуда. Газы обладают большой сжимаемостью и образуют однородные смеси. Эти свойства газов обусловлены тем, что расстояния между их молекулами в десятки раз превышают размер самих молекул. На таком расстоянии практически отсутствует межмолекулярное взаимодействие. Газообразное состояние характеризуется полной неупорядоченностью расположения молекул друг относительно друга. Молекулы в газах движутся хаотически. Если газы в смеси не реагируют между собой, то они сохраняют свою химическую индивидуальность, и поэтому многие физикохимические свойства таких систем могут быть выведены по правилу аддитивности: суммированием характеристик образующих их газов с учетом их мольных долей. Например, средняя молярная масса смеси газов X, YZ определяется так:

М(Х + Y + Z) = х(Х) • М(Х) + X(Y) • М(Y) + *(Z) • М(Z),

где х(Х), x(Y)> x(Z) — мольные доли газов X, YZ;

М(Х), М(Y), М(Z) — молярные массы газов X, YZ.

Четвертое агрегатное состояние — плазма, которая представляет собой ионизированный газ.

Жидкое состояние

В отличие от газов, в жидкостях молекулы расположены ближе друг к другу и удерживаются силами межмолекулярного взаимодействия (рис. 226). Это подтверждает, например, тот факт, что один объем воды образуется в результате конденсации 1300 объемов пара. Расстояние между частицами в жидкостях невелико, поэтому жидкости обладают незначительной сжимаемостью, при данной температуре им присущ определенный объем. Чтобы заметно уменьшить их объем, требуется очень большое давление. В то же время силы межмолекулярного притяжения в жидкостях недостаточно велики, чтобы придать им определенную форму. Молекулы в жидкости свободно перемещаются друг относительно друга, поэтому жидкости обладают текучестью и приобретают форму содержащего их сосуда.

Следовательно, жидкости по структуре и свойствам занимают промежуточное положение между газообразными и твердыми веществами. С повышением температуры жидкости усиливается беспорядок во взаимном расположении частиц, что приближает их к газам. При понижении температуры упорядоченность внутренней структуры возрастает, что сближает их с твердыми веществами.

Твердое состояние

В твердом агрегатном состоянии среднее расстояние между образующими вещество частицами сопоставимо с их размерами, а энергия взаимодействия значительно превышает их среднюю кинетическую энергию. Частицы, образующие твердое вещество, не могут свободно перемещаться друг относительно друга, они лишь совершают колебательные движения около положения равновесия. Этим объясняются наличие у твердых веществ определенного объема и формы, их механическая прочность и незначительная сжимаемость. В зависимости от строения и физических свойств твердые вещества подразделяют на аморфные и кристаллические.

Аморфное состояние

Вещества в аморфном состоянии характеризуются некоторой упорядоченностью частиц, расположенных только в непосредственной близости друг от друга (так называемый ближний порядок), поэтому они изотропны, т. е. их физические свойства не зависят от направления. Проведем опыт. Нанесем на поверхность стекла тонкий ело расплавленного воска и дадим ему застыть. Коснемся застывшего вещества раскаленной иглой. Вокруг иглы воск расплавится. При этом пятно расплавленного воска примет форму круга. Следовательно, теплопроводность стекла не зависит от направления.

Аморфные вещества не имеют определенной температур плавления. При нагревании они постепенно размягчаются, начинают растекаться и, наконец, становятся жидкими. При охлаж- дении они так же постепенно затвердевают.

Аморфные вещества по структуре представляют собой переохлажденные жидкости. Подобно жидкостям они проявляют cвойства текучести, т. е. при длительном действии сравнительно не больших сил постепенно изменяют свою форму.

Примерами веществ в аморфном состоянии могут служить стекла, смолы, клеи, большинство полимеров и т. д.

Кристаллическое состояние

Большинство твердых веществ в окружающем нас мире являются кристаллическими. Для этого состояния характерно строго определенное расположение частиц во всем объеме кристалл (дальний порядок), поэтому в отличие от аморфных кристаллические вещества обладают анизотропией, т. е. их физические свойства (прочность, теплопроводность и т. д.) неодинако вы в различных направлениях. Так, если вышеописанный опыт проделать на гладкой поверхности гипса, то пятно расплавленного воска примет форму эллипса. Значит, теплопроводность гипса в одном направлении более высокая, чем в других.

Кристаллическое вещество в отличие от аморфного плавите; при строго определенной температуре, которую называют температурой плавления. Температура плавления — одно и важнейших физических свойств вещества, измеряя ее, можно определить чистоту данного вещества.

ТЕМА 20: Чистые вещества и смеси. Понятие о смеси веществ. Гомогенные и гетерогенные смеси.

  Мы живем среди химических веществ. Мы вдыхает воздух, а это смесь газов (азота, кислорода и других), выдыхаем углекислый газ. Умываемся водой - это еще одно вещество, самое распространенное на Земле. Пьём молоко - смесь воды с мельчайшими капельками молочного жира, и не только: здесь еще есть молочный белок казеин, минеральные соли, витамины и даже сахар, но не тот, с которым пьют чай, а особый, молочный - лактоза. Едим яблоки, которые состоят из целого набора химических веществ - здесь и сахар, и яблочная кислота, и витамины... Когда прожеванные кусочки яблока попадают в желудок, на них начинают действовать пищеварительные соки человека, которые помогают усваивать все вкусные и полезные вещества не только яблока, но и любой другой пищи. 

Мы не только живем среди химических веществ, но и сами из них состоим. Каждый человек - его кожа, мышцы, кровь, зубы, кости, волосы построены из химических веществ, как дом из кирпичей. 

Азот, кислород, сахар, витамины – вещества природного, естественного происхождения. Стекло, резина, сталь – это тоже вещества, точнее, материалы (смеси веществ). И стекло, и резина - искусственного происхождения, в природе их не было. Совершенно чистые вещества в природе не встречаются или встречаются очень редко.

Чем же отличаются чистые вещества от смесей веществ?

Индивидуальное чистое вещество обладает определённым набором характеристических свойств (постоянными физическими свойствами). 

Только чистая дистиллированная вода имеет tпл = 0 °С, tкип= 100 °С, не имеет вкуса. 

Морская вода замерзает при более низкой, а закипает при более высокой температуре, вкус у нее горько-соленый. 

Вода Черного моря замерзает при более низкой, а закипает при более высокой температуре, чем вода Балтийского моря. Почему? Дело в том, что в морской воде содержатся другие вещества, например растворенные соли, т.е. она представляет собой смесь различных веществ, состав которой меняется в широких пределах, свойства же смеси не являются постоянными. Определение понятия «смесь» было дано в XVII в. английским ученым Робертом Бойлем: «Смесь – целостная система, состоящая из разнородных компонентов».

Чистые вещества и смеси

Содержание

  • Чистые вещества и смеси
  • Однородные и неоднородные смеси

Большинство окружающих нас объектов (тел) состоит не из индивидуальных веществ, а из их смесей. Смеси могут быть газообразными, жидкими, твёрдыми. Примерами смесей являются воздух, молоко, лимонад, морская и речная вода, сплавы металлов, плазма крови. Смесь всегда состоит из двух или более индивидуальных соединений.

Смеси бывают однородными и неоднородными.

Однородные (гомогенные) смеси

смеси, в которых образующие их частицы нельзя обнаружить ни визуально, ни с помощью оптических приборов.

Примерами однородных смесей являются раствор сахара или поваренной соли в воде, чистый воздух.

Неоднородные (гетерогенные) смеси

смеси, в которых образующие их частицы можно обнаружить визуально или с помощью оптических приборов

Гранит и молоко — примеры неоднородных смесей. В граните невооружённым глазом можно различить его составные части — зёрна полевого шпата, кристаллы кварца и тёмные блестящие чешуйки слюды. Несмотря на то что молоко кажется однородным, при рассматривании под микроскопом в нём можно увидеть плавающие в воде капельки жира.

Рис. 1. Гранит и молоко под микроскопом


Сравнительная характеристика однородных и неоднородных смесей

Смеси
ОднородныеНеоднородные
Частицы нельзя обнаружить ни визуально, ни с помощью оптических приборовЧастицы можно обнаружить либо визуально, либо с помощью оптических приборов
Примеры смесей
Растворы поваренной соли в воде, сахара в воде, спирта в воде; бензин, сплавы (латунь, бронза и др.), чистый воздух, природный газСмесь глины с водой, молоко, плазма крови, туман, дым, глина, влажная почва, косметические средства (мази, тушь, помада и др.), газированные напитки

Чистые вещества всегда однородны и, в отличие от большинства смесей, имеют постоянный состав и постоянные температуры кипения и плавления. Это позволяет отличить чистое вещество от его смеси с другими веществами. Если наблюдать за температурой в процессе нагревания какого-либо чистого вещества, например льда, то можно заметить, что термометр будет фиксировать температуру  до тех пор, пока весь лёд не растает. А парафин только кажется однородным, а на самом деле представляет собой смесь углеводородов. В отличие от чистого вещества, парафин не имеет строго определённой температуры плавления и плавится в некотором интервале температур: сначала он размягчается, а затем постепенно переходит в жидкое состояние. При этом температура парафина будет постепенно повышаться.

Чистые жидкости кипят при строго определённой температуре. Например, если нагревать воду, то её температура сначала постепенно повышается. При температуре  вода начинает кипеть, при этом в течение всего процесса кипения показания термометра изменяться не будут. Иная картина наблюдается при нагревании нефти: её температура постепенно повышается, но, в отличие от воды, не останавливается на фиксированном значении. Это связано с тем, что нефть представляет собой смесь многих веществ. Индивидуальные вещества в составе смесей сохраняют свои свойства. Для изучения свойств чистого вещества его необходимо очистить от примесей, то есть разделить смесь веществ.


Сравнительная характеристика чистого вещества и смеси

Признаки сравненияЧистое веществоСмесь
СоставПостоянныйНепостоянный
Физические свойстваПостоянныеНепостоянные

Коротко о главном

Свойства отдельных компонентов в смеси сохраняются.

Для чистых веществ характерно постоянство состава и свойств.

Различают однородные (гомогенные) и неоднородные (гетерогенные) смеси.

Смеси содержат отдельные компоненты в любых отношениях и не обладают постоянными свойствами.

Вопросы для самоконтроля

  1. Как вы считаете, можно ли изучать свойства воды, используя для этой цели водопроводную воду? Аргументируйте свой ответ.
  2. Как вы считает, существуют ли в природе абсолютно чистые вещества?
  3. Приведите примеры газообразных, жидких и твёрдых смесей.
  4. Существует ли универсальный способ, с помощью которого чистое вещество можно отличить от смеси?
  5. Предложите и обоснуйте способы, с помощью которых сплав меди с цинком (латунь) можно отличить от чистой меди.

Чем отличаются чистые вещества и смеси?

Любое чистое вещество обладает индивидуальным химическим составом, который находит отражение в химической формуле. Чистому веществу соответствует определённый ряд физико-химических характеристик, строго индивидуальных для конкретного вещества. Именно по этим характеристикам (температуре кипения или плавления, электропроводности, показателю преломления и др.) можно идентифицировать чистое вещество.

Смесь же состоит из нескольких чистых веществ, и свойства смеси могут меняться в зависимости от её количественного состава.

Например, обратите внимание, что вкус воды из-под крана разный в разных городах. Кроме того, в одном городе шампунь и мыло смываются быстро и легко, а в другом городе может возникать ощущение, что мыло смываться не хочет. Это обусловлено разной жёсткостью воды, которая вызвана содержанием в ней различных солей кальция, магния и других металлов. Следовательно, вода из-под крана содержит не только индивидуальное вещество (дистиллированную воду), но и другие вещества (хлорид кальция, карбонат кальция, хлорид магния и т. д.). 

Чистые вещества (индивидуальные) можно также встретить в быту, например алюминиевая ложка, железный гвоздь, медная проволока. В то же время золотое или серебряное украшение не является чистым веществом — украшения всегда производятся из сплава металлов. 


ТЕМА

Реакции отщепления (дегидрирования, дегидрогалогенирования, дегидратации.

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрированиядегидратациидегидрогалогенирования и т.п.:

  1. Дегидрирование – отщепления молекулы водорода: 

  1. Дегидратация – отщепление молекулы воды: 



  1. Дегидрогалогенирования – отщепления молекулы галогеноводородов: 


    ТЕМА 12:РЕАКЦИИ ЗАМЕЩЕНИЯ. РЕАКЦИИ ИЗОМЕРИЗАЦИИ.                 

                    

 РЕАКЦИИ ЗАМЕЩЕНИЯ

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:



Реакции изомеризации и перегруппировка  

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:





Крахмал, его строение, химические свойства, применение.

КРАХМАЛ, ЕГО СТРОЕНИЕ, ХИМИЧЕСКИЕ СВОЙСТВА, ПРИМЕНЕНИЕ

I. Фильм: “Полисахариды”


II. Физические свойства

  

Крахмал белый порошок, нерастворимый в холодной воде и образующий коллоидный раствор (крахмальный клейстер) в горячей воде. Существует в двух формах: амилоза – линейный полимер, растворимый в горячей воде, амилопектин – разветвлённый полимер, не растворимый в воде, лишь набухает.


III. Нахождение в природе


Крахмал – основной источник резервной энергии в растительных клетках – образуется в растениях в процессе фотосинтеза и накапливается в клубнях, корнях, семенах:                   

6CO2 + 6H2O     свет, хлорофилл →     C6H12O6 + 6O2

nC6H12O→ (C6H10O5)n + nH2O

 глюкоза                               крахмал

Содержится в клубнях картофеля, зёрнах пшеницы, риса, кукурузы.

Гликоген (животный крахмал), образуется в печени и мышцах животных. 

IV. Строение


Состоит из остатков α - глюкозы. 

В состав крахмала входят:

  • амилоза (внутренняя часть крахмального зерна) – 10-20%
  • амилопектин (оболочка крахмального зерна) – 80-90%

Цепь амилозы включает 200 – 1000 остатков α-глюкозы и имеет неразветвленное строение.

Амилопектин состоит из разветвленных макромолекул, молекулярная масса которых достигает 1 - 6 млн.

Амилоза и амилопектин гидролизуются под действием кислот или ферментов до глюкозы, которая служит непосредственным источником энергии для клеточных реакций, входит в состав крови и тканей, участвует в обменных процессах. Поэтому крахмал – необходимый резервный углевод питания.

Иллюстрация. Строение крахмала (амилоза, амилопектин)

Иллюстрация. Фрагмент молекулы крахмала.

Видео-опыт: "Кислотный гидролиз крахмала"

Подобно амилопектину построен гликоген (животный крахмал), макромолекулы которого отличаются большей разветвлённостью:

V. Применение


Крахмал широко применяется в различных отраслях промышленности (пищевой, бродильной, фармацевтической, текстильной, бумажной и т.п.).

  • Ценный питательный продукт.
  • Для накрахмаливания белья.
  • В качестве декстринового клея.

VI. Химические свойства полисахаридов


1. Гидролиз        

(C6H10O5)n + nH2t,H2SO4 → nC6H12O6

                                                      глюкоза

Гидролиз протекает ступенчато:

(C6H10O5)n → (C6H10O5)m → xC12H22O11 →  n C6H12O6        (Примечание, m<n)

крахмал             декстрины       мальтоза           глюкоза

2. Качественная реакция

Охлаждённый крахмальный клейстер + I2 (раствор) = синее окрашивание, которое исчезает при нагревании.

Макромолекула амилозы представляет собой спираль, 


каждый виток которой состоит из 6 звеньев α-глюкозы.При взаимодействии амилозы с йодом в водном растворе молекулы йода входят во внутренний канал спирали, образуя так называемое соединение включения. Это соединение имеет характерный синий цвет. Данная реакция используется в аналитических целях для обнаружения, как крахмала, так и йода (йодкрахмальная проба)

непрочитанные уроки

406 ТЕМА 12 Химическое строение как порядок соединения атомов в молекулы по валентности.

Основные положения теории химического строения.

В 1860-х гг.  А. М. Бутлеров сформулировал основные положения, ставшие впоследствии фундаментом теории строения органических соединений. Согласно этой теории:

  • атомы  в органических молекулах соединены друг с другом  в соответствии с  валентностью, при этом углерод всегда четырехвалентен;
  • порядок соединения атомов в молекуле называется химическим строением;
  • свойства веществ определяются не только их составом, но и химическим строением;
  • атомы в молекулах оказывают взаимное влияние друг на друга;
  • исходя из строения молекулы можно предсказать свойства вещества, и, наоборот, на основании химических свойств можно предсказать строение вещества.

Углеводородные цепи могут быть как открытыми (алициклическими), так и замкнутыми (циклическими), как прямыми, так и разветвленными.

Определение

Гомологи — органические соединения, принадлежащие к одному классу веществ, обладающие сходным строением и свойствами, но отличающиеся друг от друга по составу на одну или несколько групп СН и отвечающие одной общей формуле.

Способы отображения строения молекул. Формулы. Модели

Структуру вещества, то есть порядок соединения атомов в молекуле, отображает структурная формула, в которой связи между атомами (или группами атомов) изображаются в виде черточек: одна черточка означает одну связь или одну общую электронную пару. Поскольку углерод в органических соединениях всегда четырехвалентен, то  каждый атом углерода может образовывать  четыре связи (четыре черточки).

По количеству соседних углеродных атомов, атомы углерода в молекуле подразделяются на первичные (один «сосед»), вторичные (два «соседа»), третичные (три «соседа») и четвертичные (четыре «соседа»).  Так, концевые атомы в молекуле углеводородов всегда первичные, в линейных молекулах промежуточные атомы — вторичные, а в разветвленных могут появляться третичные и (или) четвертичные атомы углерода.

Для отображения органических молекул используют молекулярные или брутто-формулы, которые представляют собой сокращенную форму записи количественного и качественного состава.

Например, запись СН означает, что молекула вещества состоит из 2 атомов углерода и 6 атомов водорода.  Для каждого класса органических соединений можно вывести  общую формулуотвечающую количественному составу всех гомологов. Эту формулу называют общей формулой гомологического ряда. Вещества, принадлежащие к одному классу, отвечают одной общей формуле. 

 Сравним структурные формулы простейших углеводородов: метана, этана и пропана.

Молекулярная формула метана СН, этана СН, пропана СН. Видно, что формула этана отличается от формулы метана на одну группу СН. Аналогично, состав молекул пропана и этана также отличается на одну группу СН. Следовательно, все эти вещества являются гомологами и относятся к гомологическому ряду метана. Прибавив к формуле пропана указанную гомологическую разницу СН, получим формулу следующего представителя этого гомологического ряда — СН (бутан):

Для состава  СН можно изобразить еще одну структурную формулу:

Следовательно, веществ состава СН  должно быть два, каждому из этих веществ соответствует своя структурная формула. Если первое вещество называется бутаном или н-бутаном, то второе — изобутаном. Бутан и изобутан — изомеры, так как у них одинаковый количественный состав, но разный порядок соединения атомов. Подробно с явлением  изомерии и изомерами можно познакомиться в теме «Виды изомерии».

Для пространственного отображения структуры молекул органических веществ используют  стереохимические формулы.

Стереохимическая формула показывает пространственное расположение атомов в молекулах органических веществ.

Например, пространственное строение этана можно отобразить  стереохимической формулой или с помощью проекций Ньюмена, отображающих конформации этана, то есть расположение (поворот) метильных радикалов относительно одинарной С–С-связи: 

 

Более подробно проекции Ньюмена будут рассмотрены в теме «Виды изомерии».

Для наглядности отображения пространственного строения органических молекул используют также разные модели. Наиболее распространенными являются шаростержневые модели, в которых атомы имеют форму шаров, а связи представлены в виде палочек. Одинарная связь — одна палочка, двойная связь — две палочки. Более достоверно истинную структуру молекул отображают масштабные (полусферические) модели:

      

 ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ: ИЗГОТОВЬТЕ МОДЕЛЬ МОЛЕКУЛЫ ЛЮБОГО ОРГАНИЧЕСКОГО ВЕЩЕСТВА (ПО ЖЕЛАНИЮ, ИЗ ПОДРУЧНЫХ МАТЕРИАЛОВ:ПЛАСТИЛИН,СПИЧКИ, ЗУБОЧИСТКИ,ОРЕХИ ИТ.П.БУДЕТ ВЫСОКАЯ ОЦЕНКА)


ГРУППА 308 химия 24,25



урок 7 химия 406


ПРАКТИЧЕСКАЯ РАБОТА №2

Получение, собирание и распознавание газов. 



Задачи

1

Условие:

Получение, собирание и распознавание водорода.

Решение:

При добавлении к цинку соляной кислоты наблюдается выделение бесцветного газа — водорода.

При поднесении к спиртовке слышен свистящий звук. Следовательно, водород не чистый, а смешан с воздухом.

Водород собирают в перевернутую пробирку, т. к. он легче воздуха.


2

Условие:

Получение, собирание и распознавание кислорода.

Решение:

При добавлении оксида марганца (IV) пероксид водорода бурно разлагается.

При внесении в пробирку тлеющей лучинки, она разгорается, что свидетельствует о наличии кислорода.


3

Условие:

Получение, собирание и распознавание углекислого газа.

Решение:

При добавлении раствора уксусной кислоты к мрамору (мелу) наблюдается бурное выделение углекислого газа.

При внесении в пробирку горящей лучины, она гаснет.

При пропускании углекислого газа через раствор известковой воды она мутнеет, а потом вновь становится прозрачной.


4

Условие:

Получение, собирание и распознавание аммиака.

Решение:

Ощущается запах аммиака.

Влажная лакмусовая бумажка синеет. 


Аммиак имеет резкий запах!

406 химия
ТЕМА 8: Решение экспериментальных задач.

Получение, собирание и распознавание газов. Решение экспериментальных задач. (ПОСМОТРИТЕ ПРЕЗЕНТАЦИЮ И ОФОРМИТЕ РАБОТУ, ЕЩЕ ИМЕЮТСЯ МАТЕРИАЛЫ ПО ЭТОЙ РАБОТЕ ВО ВКЛАДКЕ "ЛАБОРАТОРНЫЕ РАБОТЫ"