ЧЕТВЕРГ. 23.09.21г. 403, 401, 406
ГРУППА 403 БИОЛОГИЯ
ТЕМА: Обмен веществ. Фотосинтез.
ПРОЧИТАЙТЕ, РАССМОТРИТЕ РИСУНКИ, СОЗДАЙТЕ КРАТКИЙ КОНСПЕКТ,МОЖНО ЧЕРТИТЬ СХЕМЫ,ГДЕ ЭТО НАДО.
Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Клетка постоянно находится в движении – цитоплазма перемещается, увлекая за собой органоиды и включения, активно работают рибосомы и митохондрии, совершается множество химических превращений. Все живые организмы, существующие на Земле, представляют собой открытые системы, характеризующиеся способностью активно обмениваться с окружающей средой веществами и энергией. Из окружающей среды в клетку поступают различные вещества, а из клетки в окружающую среду удаляются ненужные продукты обмена – происходит обмен веществ, или метаболизм (Рис. 1).
Рис. 1. Обмен веществ клетки с окружающей средой (Источник)
Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли.
Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки – мономеры и направляются во все клетки организма (Рис. 2). Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и так далее).
Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы.
Рис. 2. Распределение органических веществ
Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоупорядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей.
Обмен веществ (метаболизм) – совокупность биохимических реакций, протекающих в клетке и обеспечивающих процессы ее жизнедеятельности.
В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты.
В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.
Анаболизм (ассимиляция) – совокупность химических процессов, направленных на образование и обновление структурных частей клеток, этот процесс имеет второе название – пластический обмен.
Фотосинтез: 6Н2О + 6СО2 → С6Н12О6 + 6СО2 ↑
Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ. Анаболизм является созидательным этапом обмена веществ, он всегда осуществляется с потреблением энергии и с участием ферментов.
Катаболизм (диссимиляция) – совокупность реакций, в которых происходит распад крупных органических молекул до простых соединений с одновременным высвобождением энергии.
Катаболизм обеспечивает энергией все процессы, протекающие в клетке, и имеет второе название – энергетический обмен.
Дыхание: С6Н12О6 + 6СО2 → 6Н2О + 6СО2 + АТФ
При разрыве химических связей молекул органические соединения энергии высвобождаются и запасаются главным образом в виде молекул аденозинтрифосфорной кислоты – АТФ, универсального источника энергии у всех живых организмов (Рис. 3).
Рис. 3. Строение молекулы АТФ
По своей химической природе АТФ является мононуклеотидом и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргическими связями. Выделение энергии в клетке происходит при отделении одного из фосфорных остатков от молекулы АТФ, разрыв этой связи высвобождает 7,3 килокалории, тогда как при разрыве химических связей других соединений энергии выделяется в три-четыре раза меньше. При этом образуется молекула аденозиндифосфата – АДФ, с двумя фосфорными остатками. Она легко может восстановиться до АТФ, присоединив один остаток фосфорной кислоты или отдать еще один фосфорный остаток и превратиться в аденозинмонофосфат – АМФ (Рис. 4).
Рис. 4. Выработка энергии в клетке
Переход АТФ в АДФ и обратно – это основной механизм выработки энергии в клетке. Отщепление от АТФ и АДФ фосфорного остатка приводит к выделению энергии, а присоединение к АМФ и АДФ фосфорного остатка приводит к накоплению энергии.
ТЕМА:ФОТОСИНТЕЗ.
Фотосинтез – это процесс образования органических веществ в зелёных растениях. Фотосинтез создал всю массу растений на Земле и обогатил атмосферу кислородом.
Как питается растение?
Раньше люди были уверены, что все вещества для своего питания растения берут из почвы. Но один опыт показал, что это не так.
В горшок с землёй было посажено дерево. При этом измерили массу и земли, и дерева. Когда через несколько лет снова взвесили то и другое, оказалось, что масса земли уменьшилась всего на несколько граммов, а масса растения увеличилась на много килограмм.
В почву вносили только воду. Откуда же взялись эти килограммы растительной массы?
Из воздуха. Все органические вещества растений созданы из углекислого газа атмосферы и почвенной воды.
Энергия
Животные и человек питаются растениями, чтобы получить энергию для жизни. Эта энергия содержится в химических связях органических веществ. Откуда она там?
Известно, что растение не может нормально расти без света. Свет и является энергией, с помощью которой растение строит органические вещества своего тела.
Не важно какой это свет, солнечный или электрический. Любой луч света несёт энергию, которая становится энергией химический связей и как клей удерживает атомы в больших молекулах органических веществ.
Где идёт фотосинтез
Фотосинтез проходит только в зелёных частях растений, а точнее, в особых органах растительных клеток – хлоропластах.
Хлоропласты являются разновидностью пластид. Они всегда зелёные, т. к. содержат вещество зелёного цвета – хлорофилл.
Хлоропласт отделён от остального объёма клетки мембраной и имеет вид зёрнышка. Внутреннее пространство хлоропласта называется стромой. В ней и начинаются процессы фотосинтеза.
Хлоропласты являются как бы фабрикой, на которую поступает сырьё:
- углекислый газ (формула – СО₂);
- вода (Н₂О).
Вода поступает из корней, а углекислый газ – из атмосферы через особые отверстия в листьях-устьица. Свет является энергией для работы фабрики, а полученные органические вещества – продукцией.
Сначала производятся углеводы (глюкоза), но впоследствии из них образуется множество веществ разнообразных запахов и вкусов, которые так любят животные и люди.
Из хлоропластов полученные вещества транспортируются в разные органы растения, где откладываются в запас, либо используются для процессов жизнедеятельности.
Реакция фотосинтеза
В общем виде уравнение фотосинтеза выглядит так:
СО₂(углекислый газ) + Н₂О(вода) = органические вещества(глюкоза) + О₂ (кислород)
Зелёные растения входят в группу автотрофов (в переводе – «сам питаюсь») – организмов, которым для получения энергии не нужны другие организмы.
Основная функция фотосинтеза – создание органических веществ, из которых строится тело растений.
Выделение кислорода – побочный эффект процесса.
Значение фотосинтеза
Роль фотосинтеза в природе чрезвычайно велика. Благодаря ему создан весь растительный мир и озоновый экран нашей планеты.
Благодаря фотосинтезу растения:
- являются источником кислорода для атмосферы;
- переводят энергию солнца в доступную для животных и человека форму.
Жизнь на Земле стала возможной при накоплении достаточного количества кислорода в атмосфере. Ни человек, ни животные не смогли бы жить в те далёкие времена, когда его не было, или было мало.
Какая наука изучает процесс фотосинтеза
Фотосинтез изучают разные науки, но больше всего ботаника и физиология растений.
Ботаника – это наука о растениях и, поэтому изучает его как важный жизненный процесс растений.
Наиболее подробно изучает фотосинтез физиология растений. Учёные-физиологи определили, что этот процесс сложный и имеет стадии:
- световую;
- темновую.
Это значит, что фотосинтез начинается на свету, но заканчивается в темноте.
Что мы узнали?
Изучив данную тему по биологии 5 класса, можно объяснить кратко и понятно фотосинтез как процесс образования в растениях органических веществ из неорганических (СО₂ и Н₂О). Его особенности: проходит в зелёных пластидах (хлоропластах), сопровождается выделением кислорода, осуществляется под действием света.
Тест по теме
Подробнее: https://obrazovaka.ru/biologiya/fotosintez-kratko-5-klass.html
ГРУППА 401 ХИМИЯ
ТЕМА: Определение массовой доли химических элементов в сложном веществе.
Массовую долю элемента выражают в долях от единицы или в процентах:
ω(Э) = m (Э) / Мr(в-ва) (1)
ω% (Э) = m(Э) · 100%/Мr(в-ва)
Как правило, для расчетов массовой доли элемента берут порцию вещества, равную молярной массе вещества, тогда масса данного элемента в этой порции равна его молярной массе, умноженной на число атомов данного элемента в молекуле.
Так, для вещества АxВy в долях от единицы:
ω(A) = Ar(Э) · Х / Мr(в-ва) (2)
Из пропорции (2) выведем расчетную формулу для определения индексов (х, y) в химической формуле вещества, если известны массовые доли обоих элементов и молярная масса вещества:
Х = ω%(A) · Mr(в-ва) / Аr(Э) · 100% (3)
Разделив ω% (A) на ω% (В) , т.е. преобразовав формулу (2), получим:
ω(A) / ω(В) = Х · Ar(А) / У · Ar(В) (4)
Расчетную формулу (4) можно преобразовать следующим образом:
Х : У = ω%(A) / Ar(А) : ω%(В) / Ar(В) = X(А) : У(В) (5)
Расчетные формулы (3) и (5) используют для определения формулы вещества.
Если известны число атомов в молекуле вещества для одного из элементов и его массовая доля, можно определить молярную массу вещества:
Mr(в-ва) = Ar(Э) · Х / W(A)
РЕШЕНИЕ:
Mr (H2SO4) = 1 · 2 + 32 + 16 · 4 = 98
Для этого численное значение массы элемента (с учетом индекса) делят на молярную массу вещества:
ω(Н) = 2 : 98 = 0,0204, или 2,04%;
ω(S) = 32 : 98 = 0,3265, или 32,65%;
ω(О) = 64 : 98 =0,6531, или 65,31%
РЕШЕНИЕ:
Mr( Al2O3) = 27 · 2 + 16 · 3 = 102
ω(Al) = 54 : 102 = 0,53 = 53%
ω(O) = 48 : 102 = 0,47 = 47%
ТЕМА: Периодический закон Д.И. Менделеева. Открытие Д.И. Менделеевым Периодического закона. Периодический закон в формулировке Д.И. Менделеева.
связь, которая возникает между атомами, сильно различающимися по значениям электроотрицательности.
Ионная связь возникает, например, между атомами типичных металлов и типичных неметаллов (
Примерами веществ с ионной связью являются
Ионную связь можно рассматривать как крайний случай ковалентной полярной связи, когда электрон практически полностью переходит от атома с меньшей электроотрицательностью к атому с большей электроотрицательностью. Однако в действительности полного перехода электрона не происходит никогда. Даже в таких типичных ионных соединениях, как, например, в галогенидах щелочных металлов, нет полного разделения положительных и отрицательных зарядов. Так, в кристалле хлорида натрия
В результате отдачи или присоединения электронов из нейтральных атомов или молекул образуются ионы.
заряженные частицы, образующиеся из нейтральных атомов или молекул путём отдачи или присоединении электронов.
При отдаче электронов образуется положительно заряженный ион — катион, при присоединении — отрицательный ион — анион. Атомы электроположительного элемента (металла) отдают электроны внешнего уровня и образуют катионы, а атомы электроотрицательного элемента (неметалла) присоединяют электроны и образуют анионы. При этом атомы неметалла приобретают внешнюю электронную оболочку последующего благородного газа, а атомы металла — устойчивую конфигурацию предыдущего благородного газа.Так, между атомами типичного металла натрия
У атома натрия на внешнем электронном уровне содержится один электрон, а атому хлора до завершения внешнего уровня не хватает одного электрона. При взаимодействии атомов натрия и хлора атом натрия отдает один электрон атому хлора, в результате чего образуются ионы — катионы
При этом атомы неметалла приобретают внешнюю электронную оболочку последующего благородного газа, а атомы металла — устойчивую конфигурацию предыдущего благородного газа. Между разноименно заряженными ионами
Ионная связь никогда не возникает между атомами неметаллов.
Ионы могут состоять как из одного атома, так и из группы атомов. Например, кристаллы сульфата натрия образованы положительными ионами натрия
При этом в сульфате натрия существует два вида связи: между ионами
Записывая заряд иона, сначала следует написать число, а затем знак, например,
Ионная связь существует в типичных основных оксидах (
Разноименные ионы притягиваются друг к другу, образуя ионные кристаллы. В основе такого притяжения лежит кулоновское взаимодействие, которое равнонаправлено во все стороны. Поэтому ионная связь, в отличие от ковалентной, характеризуется ненаправленностью и ненасыщаемостью. Вследствие этого понятие валентности как число связей в ионных соединениях теряет смысл.
В кристаллах ионного соединения противоположно заряженные ионы чередуются. Число ближайших соседей данного иона в решетке называют координационным числом. Так, координационное число натрия и хлора в хлориде натрия равно шести.
В ионных соединениях нет отдельных молекул, поэтому формула ионного соединения выражает не состав молекулы, а соотношение катионов и анионов, например, в сульфате натрия
Ионы связаны между собой прочными силами электростатического притяжения, поэтому ионные соединения твёрдые, обладают высокими температурами плавления и кипения.
КРАТКО:
Ионная связь — сильная химическая связь, возникающая в результате электростатического притяжения катионов и анионов[1]. Возникает между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Это притяжение ионов как разноимённо заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу, образуются ионы.
Ионная связь
ИОННАЯ КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА.
Ионная кристаллическая решетка
1. Характеристика
У веществ с ионной решеткой в узлах расположены разноименно заряженные ионы, удерживаемые силами электростатического притяжения. (слайд 14)
2. Аналогия
Уподобим эту структуру группе расположенных в шахматном порядке мужчин и женщин (рис. 2). Пусть мужчины символизируют катионы, а женщины - анионы. Тогда каждый человек оказывается в зоне действия обаяния окружающих его представителей противоположного пола, к которым он (она) в силу закона притяжения противоположностей испытывает интерес. Интерес этот одинаково выражен во всех направлениях, поскольку на рисунке - холостые мужчины и незамужние женщины. Этим и объясняется повышенная прочность ионного кристалла.
Рис. 2. Романтическая сила влечения (аналогия ионного кристалла