среда, 21 декабря 2022 г.

21.12.22 г. СРЕДА . Группы 403,508, 306

 21.12.22 г. СРЕДА . Группы 403,508, 306

Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи (ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения).Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 403 экология 7,8

ТЕМА 7 : Пути воздействия организмов на среду обитания.

ОТКРОЙТЕ ЭЛЕКТРОННЫЙ УЧЕБНИК С. ПАРАГРАФ 5 , ПРОЧИТАЙТЕ, РАССМОТРИТЕ РИСУНКИ, СХЕМЫ, СОСТАВЬТЕ ПЛАН, НА С.45 ВОПРОСЫ, ОТВЕТЬТЕ ПИСЬМЕННО НА ВОПРОС 1.

ТЕМА 8 :Приспособительные формы организмов.

ОТКРОЙТЕ ЭЛЕКТРОННЫЙ УЧЕБНИК С. ПАРАГРАФ 6 , ПРОЧИТАЙТЕ, РАССМОТРИТЕ РИСУНКИ, СХЕМЫ, СОСТАВЬТЕ ПЛАН, НА С.52 ВОПРОСЫ, ОТВЕТЬТЕ ПИСЬМЕННО НА ВОПРОС 1.

ГРУППА 508 БИОЛОГИЯ 18,19

ТЕМА 18, 19:Образование и-РНК по матрице ДНК. Генетический код. 

Образование и-РНК по матрице ДНК. Генетический код. Биосинтез белков.



Трудно, глядя на типографскую матрицу, судить о том, хорошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хороший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

Ход образования и-РНК. К рибосомам, местам синтеза бел­ков, из ядра поступает несущий информацию посредник, способный пройти через поры ядерной оболочки. Таким посредником является информационная РНК (и-РНК). Это одноцепочечная молекула, комплементарная одной нити молекулы ДНК. Специальный фермент — полимераза, двигаясь по ДНК, подбирает по принципу комплементарности нуклеотиды и соединяет их в единую цепочку (рис. 21). Процесс образования и-РНК называется транскрип­цией (от лат. «транскрипцио» — переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь и-РНК аденин, если стоит гуанин — включает цитозин, если аденин — то урацил (в состав РНК не входит тимин).

По длине каждая из молекул и-РНК в сотни раз короче ДНК. Ин­формационная РНК — копия не всей молекулы ДНК, а только части ее, одного гена или группы рядом лежащих генов, несущих ин­формацию о структуре белков, не­обходимых для выполнения од­ной функции. У прокариот такая группа генов называется опероном. В начале каждой группы генов находится своего рода посадочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, полимераза способна начать синтез и-РНК. В конце группы генов фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец переписывания. Готовая и-РНК отходит от ДНК, покидает ядро и направляется к месту синтеза белков — рибосоме, расположенной в цитоплазме клетки.

В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:

ДНК—и-РНК—белок.

3. Генетический код — определенные сочетания нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК.\

Ген — участок молекулы ДНК, несущий информацию о структуре одной молекулы белка.

Свойства генетического кода:

— триплетность — одна аминокислота кодируется тремя рядом расположенными нуклеотидами — триплетом, или кодоном;

— универсальность — код един для всего живущего на Земле (у мха, сосны, амебы, человека, страуса и пр. одни и те же триплеты кодируют одни и те же аминокислоты);

— вырожденность — одной аминокислоте может соответствовать несколько триплетов (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним трип­летом (метионин кодируется триплетом АУГ);

— специфичность — каждый триплет кодирует только одну аминокислоту.

Триплеты ГАА или ГАГ, занимающие шестое место в гене здоровых людей, несут информацию о цепи гемо­глобина, кодируя глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид заменен на У, а триплеты ГУА и ГУГ кодируют валин;

— неперекрываемость — кодоны одного гена не мо­гут одновременно входить в соседний;

— непрерывность — в пределах одного гена считывание генетической информации происходит в од­ном направлении.

4. Трансляция – механизм, с помощью которого последовательность триплетов оснований иРНК переводится в специфическую последовательность аминокислот в полипептидной цепи.

Подготовительным этапом трансляции является рекогниция – активирование и присоединение аминокислоты к тРНК (фермент аминоацил-тРНК-синтетаза (кодаза)).

Затем иРНК соединяется с рибосомой (у прокариот начинается синтез с кодона АУГ, с которым взаимодействует антикодон особой тРНК (с формилметионином)), затем первая тРНК доставляет сюда первую аминокислоту (для каждой аминокислоты есть своя тРНК) и связывается с определенным участком иРНК по принципу комплементарности (антикодон тРНК соответствует кодону иРНК).

Происходит связывание с иРНК и с рибосомой второй тРНК, несущей вторую аминокислоту. Первая и вторая аминокислоты соединяются пептидной связью (фермент пептидил-трансфераза). Затем рибосома перемещается на один триплет вперед, первая тРНК освобождается, приходит третья тРНК. Рибосома перемещается по молекуле иРНК прерывисто, триплет за триплетом, делая каждый из них доступным для контакта с тРНК. Сущность трансляции в подборе по принципу комплементарности антикодона тРНК к кодону иРНК. Если антикодон тРНК соответствует кодону иРНК, то аминокислота, доставляемая такой тРНК, включается в полипептидную цепь, и рибосома перемещается на следующий триплет (фермент транслоказа).

Как только рибосома дойдет до стоп-кодона иРНК, происходит распад комплекса, полипептид отделяется от матрицы-иРНК и приобретает свою конформацию.

Для трансляции необходимы ферменты (кодаза, пептидил-трансфераза, транслоказа), энергия АТФ, ионы Mg2+.

Таким образом, главными этапами трансляции являются:

1) присоединение иРНК к рибосоме;

2) рекогниция (активация аминокислоты и ее присоединение к тРНК);

3) инициация (начало синтеза) полипептидной цепи;

4) элонгация (удлинение) цепи;

5) терминация (окончание синтеза) цепи;

6) дальнейшее использование иРНК (или ее разрушение).

ГРУППА 306 Биология 33

ТЕМА 33: РЕШЕНИЕ ЗАДАЧ

На предыдущих уроках мы с вами изучали законы Менделя. А для чего же изучаются вообще законы?

( Чтобы объяснить какие-то явления природы; чтобы использовать их на практике).
А как мы можем использовать законы Менделя?
( прогнозировать признаки будущих потомков, понимать свою родословную, в наблюдениях, в решении генетических задач.)

Итак, сегодня мы с вами будем решать генетические задачи.

В книге Е. Пчелова “Романовы. История династии” с. 436 говорится: “Царевич унаследовал гемофилию от матери - Александры Фёдоровны. Эта болезнь передаётся только через женщин, которые сами не болеют, но являются носителями вируса. А поражает гемофилия исключительно мужчин”.

Хотите узнать, допустил ли ошибки автор?

(Ответ: Гемофилия не вирусное заболевание, женщины могут болеть гемофилией; если мать носитель гемофилии, а отец здоров, в этом случае вероятность рождения дочери равна 25 %.)


Вспомним основные традиционные обозначения, применяемые в генетике.

Знаком «зеркало Венеры» обозначают женский пол. Знаком «копьё Марса» – мужской.

Крестик обозначает скрещивание. Буквой P (от латинского parentibus) – родительские формы. Гибридное потомство – буквой F (от латинского filios). Цифра с буквой указывает на порядковый номер поколения гибридов. Например, F1 – гибриды первого поколения.
Буквой G обозначают гаметы. Записываются они в кружках.

Итак, начнём с самого простого.

Задачи на определение типов гамет.

Задача 1. Дано: сколько и какие типы гамет может образовывать организм с генотипом AABBccDD?

Решение: гаметы имеют гаплоидный набор хромосом. Значит, в каждой из них будет по одному аллельному гену из каждой пары. Поскольку в условии нам предложен гомозиготный организм (доминантная гомозигота по первому и второму признаку, рецессивная гомозигота по третьему и доминантная гомозигота по четвёртому), аллельные гены у которого одинаковые, то и все гаметы будут одинаковыми.

Ответ: данный организм будет образовывать один тип гамет: ABcD.

Обратите внимание. Организм даёт не одну гамету, а один тип. Самих гамет может быть разное количество. Самка луна-рыбы, например, вымётывает до 300 миллионов икринок.

Задача 2. Дано: сколько и какие типы гамет будет образовывать организм с генотипом AABbccDD?

Решение: мы видим, что этот организм гетерозиготен по второму признаку, а значит в его гаметах может оказаться как ген B, так и ген b. Получаем два варианта их распределения с остальными генами: ABcD и AbcD.

Но это самый простой пример. Если гетерозиготных аллелей (пар) несколько, то при расчёте, чтобы не перебирать все возможные варианты, пользуются несложной формулой 2n, где n – количество гетерозиготных аллелей (пар).

В нашем примере с организмом AABbccDD – одна гетерозиготная аллель – Bb. Подставляем в формулу число 1. Получаем 21 и ответ: два типа гамет.

Разберём более сложный пример.
Задача 3. Дано: сколько и какие типы гамет может образовывать организм с генотипом AaBBCcDD?

Генотип содержит две гетерозиготные аллели (пары). Подставляем в формулу 2n их количество и получаем 22. Значит, данный организм может давать четыре типа гамет.
Поскольку разные аллели могут попасть в гаметы в разных сочетаниях, перебираем их все. Главное здесь быть внимательными и не запутаться.
Вначале возьмём доминантные аллельные гены из каждой гетерозиготной пары: ABCD. А дальше, отталкиваясь от этого варианта, поочерёдно заменяем доминантные аллели рецессивными: aBCD, ABcD и вариант с двумя рецессивными аллелями: aBcD.
Ответ: четыре типа гамет: ABCD, aBCD, ABcD, aBcD.

Задачи на моногибридное скрещивание.
Полное доминирование.

Задача 1. Дано: кареглазый мужчина женился на голубоглазой женщине. У них родился голубоглазый ребёнок. Определите генотипы родителей и вероятность рождения ребёнка с карими глазами.

Решение: в задаче идёт речь об одном признаке – цвете глаз. Значит, это задача на моногибридное скрещивание. Выбираем буквенные обозначения для разного состояния генов, то есть для каждого цвета глаз. При этом учитываем, что ген кареглазости доминантный, а ген, обуславливающий голубой цвет глаз рецессивный.
Пускай А обозначает карие глаза, а ген а – голубые.
Записываем ход скрещивания условными обозначениями.
Родители Р (ставим точку и двоеточие). Обратите внимание и запомните – на первом месте всегда записывается генотип женской особи. Если поставите мужскую – это будет ошибкой. Итак, женщина голубоглазая, значит у нас может быть только один вариант генотипа – аа. То есть, женский организм – рецессивная гомозигота по данному признаку. Кареглазый мужчина может быть, как доминантной гомозиготой, так и гетерозиготой. Но так как по условию задачи у этой пары рождается голубоглазый ребёнок, значит у мужчины в гаметах будет рецессивный ген а. Записываем гетерозиготу – Аа.
Далее определяем гаметы, которые будут давать родительские формы: у матери все они будут содержать а, так как гомозиготы не дают расщепления в потомстве. Будьте здесь внимательны. Записывать нужно только тип гамет. У нас он один. А у гетерозиготного отца образуется два типа гамет: одни будут содержать А – ген кареглазости, другие – а – ген, обуславливающий голубой цвет глаз.
Определяем возможные генотипы и фенотипы детей. При слиянии сперматозоида, содержащего доминантный ген А и яйцеклетки, содержащей рецессивный ген а, развивается гетерозиготный ребёнок по данному признаку с карими глазами. Это один вариант. При слиянии половых клеток с одинаковыми рецессивными генами, будет развиваться гомозиготный ребёнок по данному признаку с голубым цветом глаз. Это второй вариант. Других генотипов у гибридов первого поколения быть не может. Значит в потомстве получаем расщепление, обусловленное гетерозиготностью отца. 50% кареглазых и 50% голубоглазых детей.

Ответ: мужчина гетерозиготен по данному признаку. Женщина - рецессивная гомозигота. Вероятность рождения в семье ребёнка с карими глазами – 50%.