среда, 21 сентября 2022 г.

21.09.22 г. СРЕДА . Группы 308,405,306,408

  21.09.22 г. СРЕДА . Группы 308,405,306,408

Здравствуйте, уважаемые студенты, заведите, пожалуйста тетрадь для конспектов по химии, другую- по биологии, записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения).Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!


ГРУППА 308 ХИМИЯ 10,11

Тема:

ПОНЯТИЕ ПРЯМОЙ И ОБРАТНОЙ РЕАКЦИИ

Рассмотрим некоторую абстрактную реакцию, которую запишем в виде:

А+В→АВ, Прямая реакция. Но многие химические реакции могут идти в обратную сторону.

АВ А+В; Обратная реакция.

Для краткости такую реакцию записывают, используя две стрелки, одну – вперед, другую – назад.

А+ВАВ

При повышении температуры скорость большинства химических реакций увеличивается. Но оказывается, что в случае некоторых реакций продукт реакции при температуре, когда она идет с хорошей скоростью, уже начинает разлагаться. В частности, такая ситуация реализуется при взаимодействии водорода с йодом при получении йодоводорода.

НI2       (1)

Скорость химической реакции увеличивается с увеличением концентрации исходных веществ и соответственно уменьшается с уменьшением концентрации исходных веществ. Получается, что, по мере прохождения реакций, скорость прямой реакции будет уменьшаться, т. к. исходные вещества будут расходоваться. А скорость обратной реакции будет возрастать, потому что концентрация вещества АВ исходного для обратной реакции будет постепенно увеличиваться. До каких пор скорость прямой реакции будет уменьшаться, а обратной увеличиваться? Это будет до того момента, когда скорости прямой и обратной реакции станут равными. Наступит химическое равновесие. Рис. 1.

Рис. 1

Химическое равновесие – это состояние реакционной системы, в котором скорости прямой и обратной реакции равны.

КОНСТАНТА РАВНОВЕСИЯ

Равновесная концентрация веществ

Равновесная концентрация веществ – это концентрации веществ в реакционной смеси, находящихся в состоянии химического равновесия. Равновесная концентрация обозначается химической формулой вещества, заключенной в квадратные скобки.                                            

 Например, следующая запись обозначает,  что равновесная концентрация водорода в равновесной системе составляет 1 моль/л.

Рис. 2

Химическое равновесие  (Рис. 2) отличается от привычного для нас понятия «равновесие». Химическое равновесие – динамическое. В системе, находящейся в состоянии химического равновесия, происходят и прямая, и обратная реакции, но их скорости равны, и поэтому концентрации участвующих веществ не меняются. Химическое равновесие характеризуется константой равновесия, равной отношению констант скоростей прямой и обратной реакций.

Константы скорости прямой и обратной реакции – это скорости данной реакции при концентрациях исходных для каждой из них веществ в равных единицах. Также константа равновесия равна отношению равновесных концентраций продуктов прямой реакции в степенях стехиометрических коэффициентов к произведению равновесных концентраций реагентов. 

Если  , то в системе больше исходных веществ. Если  , то в системе больше продуктов реакции.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ

Если константа равновесия значительно больше 1, такую реакцию называют необратимой.

Необратимыми называются химические реакции, которые происходят только в одном направлении до полного расходования одного из реагентов.

Например, это реакция:                          

4Р+5О2 =2Р2О5                (2)

Обратимыми называются  химические реакции, которые осуществляются во взаимно противоположных направлениях при одних и тех же условиях.

Тема: Условия смещения химического равновесия. Принцип Ле Шателье.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СМЕЩЕНИЕ РАВНОВЕСИЯ

Если изменить внешние условия, то состояние химического равновесия нарушится. Смещение равновесия в зависимости от изменения внешних условий в общем виде определяется

· Принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывают воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведённого воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении.

Равновесие смещается вправо, если повысились равновесные концентрации продуктов прямой реакции. Если повышаются равновесные концентрации исходных веществ прямой реакции, то равновесие смещается влево. Какие факторы можно изменять, чтобы сместить равновесие? Это

· Температура

· Давление

· Концентрации веществ

· Добавление катализатора

· Изменение площади реакционной поверхности гетерогенных реакций

Добавление катализатора и изменение площади реакционной поверхности гетерогенных реакций не оказывают влияние на смещение химического равновесия.

Остальные факторы рассматриваем более детально.

Температура

Реакция синтеза аммиака (Рис. 3)

относится к экзотермическим реакциям. При прохождении прямой реакции теплота выделяется, а при прохождении обратной – поглощается. Если увеличить температуру, то, согласно правилу Ле Шателье, равновесие сместится в таком направлении, чтобы уменьшить это воздействие. В данном случае влево, так как теплота поглощается. Реакция синтеза аммиака проводится при температуре около 500

Если реакция эндотермическая, то повышение температуры приведет к смещению равновесия вправо.

Изменение концентрации веществ

При увеличении концентрации какого-либо из веществ, участвующих в равновесной реакции, равновесие реакции сместится в сторону его расходования, а соответственно, при уменьшении концентрации какого-либо из веществ – в сторону реакции его образования. Например, при увеличении концентрации азота в реакции синтеза аммиака, равновесие сместится вправо, т. е. в сторону расходования азота. Если же в этой реакции удалять из реакционной смеси аммиак, то равновесие сместится в сторону его образования. Сделать это можно, например, при растворении аммиака в воде.

Изменение давления

Изменение давления может оказывать влияние только на реакции с участием газообразных веществ. Если в реакции синтеза аммиака увеличить давление, равновесие сместится в сторону уменьшения числа моль газа. Если слева число моль газа больше, чем справа, равновесие сместится в сторону образования аммиака.

Если число моль газа одинаково и слева и справа, например, в реакции получения оксида азота (II),

N+O2      (3)

то изменение давления не будет оказывать влияние на положение химического равновесия в таких реакциях. Изучение химического равновесия имеет большое значение, как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. Окончательный выбор условий требует учета влияния их и на скорость процесса.

Подведение итога урока

На уроке была изучена тема «Химическое равновесие», рассмотрены условия смещения равновесия в случае обратимых реакций.

ГРУППА 405 ХИМИЯ 13,14

Тема:ТЕМА 13: Начала номенклатуры IUPAC.


 Начала номенклатуры IUPAC В ОРГАНИЧЕСКОЙ ХИМИИ.
ЗАДАНИЕ:ПРОСМОТРЕТЬ ВИДЕО, ПРОЧИТАТЬ, ОБРАТИТЬ ВНИМАНИЕ НА ТЕКСТ КРАСНОГО ЦВЕТА, ВЫПИСАТЬ ОСНОВНОЕ

Химическая номенклатура:

это совокупность названий индивидуальных веществ, их групп и классов, а также правила составления этих названий. Номенклатурные правила, разрабатываемые международным союзом чистой и прикладной химии (IUPAC), приняты в большинстве стран мира.

Согласно правилам IUPAC существуют следующие названия органических соединений:

- систематические

-тривиальные

- полусистематические-полутривиальные

Систематические названия полностью составляются из слов и частиц,  которые отражают определенные элементы строения молекулы и опиcывают структурные особенности соединения, например:

 

Систематическая номенклатура используется во всем мире, употребляет международную терминологию и отражает состав, а также химическое и пространственное строение соединения. 

Тривиальные названия не зависят от структуры и часто связаны с источником выделения или способом получения данного соединения. Например, яблочная кислота:

                                      

Тривиальные названия представляют собой исторически сложившиеся названий, которые отражают природный источник вещества (молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая кислота) или имя первооткрывателя (кетон Михлера, углеводород Чичибабина). Тривиальные названия не отражают точный состав и строение вещества, но позволяют увидеть, к какому классу соединений относится соединение. Многие тривиальные названия достаточно лаконичны, общеупотребимы и эквивалентны во всем мире, например валериановая кислота (англ.  valeric acid), ксилол (англ. xylol), пропионовый альдегид (англ. propionaldehyde). Поэтому употребление некоторых из них разрешено правилами IUPAC

В полусистематических-полутривиальных названиях лишь некоторые части применяются в систематическом смысле, например названия первых членов ряда алканов (метан, бутан) содержат тривиальные основы и систематический суффикс:

 

Для использования систематической номенклатуры ИЮПАК необходимо знать следующие номенклатурные термины:

·         органический радикал;

·         родоначальная структура;

·         характеристическая группа;

·         заместитель.

Органический радикал – остаток молекулы, из которой удалены один или несколько атомов водорода, при этом остаются одна или несколько валентностей.

 Из двух первых представителей алканов – метана и этана – получаются одновалентные радикалы – метил CH3- и этил CH3-CH2-. Названия одновалентных радикалов обычно получают путём замены суффикса –ан на суффикс –ил

Атомы углерода в цепи могут различаться по числу связей с соседними атомами углерода. Если число таких связей четыре, то углерод называется четвертичным (четверт.), три – третичным (трет.), две – вторичным (втор.), одна – первичным (перв.) (Рис. 2.1).




Рис.  Нумерация атомов углерода по числу валентных связей углерод-углерод

Вещества, близкие по строению и очень похожие по химическим свойствам, но различающиеся по молекулярному составу лишь на одну или несколько метиленовых групп CH2, называют гомологамиГомологи образуют гомологический ряд, где каждый последующий гомолог отличается от предыдущего на одну метиленовую группу.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При отнятии атомов водорода от любого из двух первичных атомов углерода пропана получают радикал н-пропил (нормальный пропил), а от вторичного атома углерода – изопропил. Бутан и изобутан, каждый образуют по два радикала. Буква н (нормальный) перед названием радикала указывает, что свободная валентность находится на конце неразветвлённой цепи. Приставка втор (вторичный) означает, что свободная валентность находится у вторичного атома водорода (втор-бутил), а приставка трет (третичный)  - у третичного атома углерода (трет-бутил).


Рис. Номенклатура углеводородных радикалов  

Распространёнными являются такие углеводородные радикалы, как винил CH2=CH-, аллил CH2=CH-CH2-, фенил C6H5-, бензил C6H5CH2-. Углеводородные радикалы алифатического ряда имеют общее название – алкилы (R), ароматического ряда  - арилы (Ar).  

!!! Термины – первичный, вторичный и третичный атомы углерода – используют не только в углеводородах, но и в других классах соединений.

Например галагенопроизводные и спирты в зависимости от того, у какого атома углерода находится функциональная группа, называют первичными, вторичными и третичными.

CH3CH2CH2CH2-Br     CH3CH2CH2CH(CH3)-Br            CH3C(CH3)2-Br

                  н-бутилбромид                втор-бутилбромид                   трет-бутилбромид


ТЕМА 14: Классификация реакций в органической химии


Классификацию органических реакций проводят на основе общих для всех реакций признаков: строение и состав исходных и конечных продуктов; изменение степеней окисления реагирующих частиц; тепловой эффект реакции; ее обратимость и т.п.

Наиболее часто органические реакции классифицируют по следующим признакам:

·       по конечному результату реакции (на основе сопоставления строения исходных и конечных продуктов);

·       по минимальному числу частиц, участвующих в элементарной реакции;

·       по механизму разрыва ковалентных связей в реагирующих молекулах.

Тип многостадийных реакций определяют по самой медленной (лимитирующей) стадии. Различные способы классификации часто сочетаются друг с другом.

 

1.     Классификация реакций по конечному результату

 

В основе этой классификации лежит сопоставление числа, состава и строения исходных и конечных продуктов по уравнению реакции. В соответствии с конечным результатом различают следующие типы органических реакций:

·       замещение;

·       присоединение;

·       отщепление (элиминирование);

·       изомеризация (перегруппировка);

·       разложение.

 

Если процесс сопровождается изменением степени окисления атома углерода в органическом соединении, то выделяют также реакции окисления и восстановления. Окисление и восстановление органических веществ может проходить по какому-либо из названных выше типов реакций.



ГРУППА 306 Биология 3

Тема: Углеводы. Липиды.

  • Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.
    Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.
     
    Общая формула углеводов:
    Cn(H2O)m.
    Углеводы состоят из углерода, водорода и кислорода.
    глюкоза.gif
    В состав производных углеводов могут входить и другие элементы.
     
    7319273.png
    Растворимые в воде углеводы. Моносахариды и дисахариды
    Пример:
    из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.
    Глюкоза — основной источник энергии для клеточного дыхания.
    Фруктоза — составная часть нектара цветов и фруктовых соков.
    Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
    Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.
    Пример:
    сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:
    сахароза (глюкоза + фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.
    Лактоза (глюкоза + галактоза) — входит в состав молока млекопитающих.
    Мальтоза (глюкоза + глюкоза) — источник энергии в прорастающих семенах.
    Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.
    Нерастворимые в воде полисахариды
    Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.
     
    Пример:
    полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.
    Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
    Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.
    Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.
    Целлюлоза нерастворима в воде и обладает высокой прочностью.
    Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
    Гликоген — резервный углевод животной клетки.
    В состав соединительных тканей животных входят сложные полисахариды. Они содержатся в межклеточном веществе кожи, в хрящах и сухожилиях.
  • Липиды — обширная группа жироподобных веществ (сложных эфиров жирных кислот и трёхатомного спирта глицерина), нерастворимых в воде. К липидам относят жиры, воски, фосфолипиды и стероиды (липиды, не содержащие жирных кислот).
    Липиды состоят из атомов водорода, кислорода и углерода.
    жир.jpg
    Липиды присутствуют во всех без исключения клетках, но их содержание в разных клетках сильно варьирует (от 23 до 5090 %).
    Липиды могут образовывать сложные соединения с веществами других классов, например с белками (липопротеины) и с углеводами (гликолипиды).
    Функции липидов:
    • запасающая — жиры являются основной формой запасания липидов в клетке.
    • Энергетическая — половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров (при окислении они дают более чем в два раза больше энергии по сравнению с углеводами).
    • Жиры используются и как источник воды (при окислении 1 г жира образуется более 1 г воды).
    • Защитная — подкожный жировой слой защищает организм от механических повреждений.
    • Структурная — фосфолипиды входят в состав клеточных мембран.
    • Теплоизоляционная — подкожный жир помогает сохранить тепло.
    • Электроизоляционная — миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
    • Гормональная (регуляторная) — гормон надпочечников (кортизон) и половые гормоны (прогестерон и тестостерон) являются стероидами.
    • Смазывающая — воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налётом покрыты листья многих растений, воск используется при строительстве пчелиных сот.

ГРУППА 408 БИОЛОГИЯ 11,12

Тема 11: Взаимоотношения организма и среды.

1. Взаимоотношения организма и среды.

Развитие организма как целостной системы. Системы организмов и биота Земли.

ОРГАНИЗМ И ОКРУЖАЮЩАЯ СРЕДА

Следуя экологическому подходу, можно мысленно вычленить из мира живой природы, всего многообразия живых организмов только одну особь. Эта условно изолированная особь (например, заяц) будет находиться под воздействием толькофакторовокружающей среды, среди которых основными окажутся климатические. Именно они, прежде всего температура, влажность, освещенность и др., имеют определяющее значение в распространении тех или иных видов на Земле. Кроме того, для водных организмов особое значение приобретает вода как единственная среда обитания, а для наземных растений огромную роль играют физические и химические свойства почвы. Изучение действия различных природных факторов на отдельный (искусственно изолированный организм) есть первое и наиболее простое подразделение экологии –аутэкология или факториальная экология.

Среда с позиции экологии. Организм является начальной, основной единицей обмена веществ. Именно с организма и начинается цепочка взаимоотношений живой материи, ее нельзя прервать ни на одном уровне. Очевидно, что существует глубокая связь между организмом и окружающей средой.

Среда  комплекс природных тел и явлений, с которыми организм находится в прямых или косвенных взаимоотношениях. В широком смысле это материальные тела, явления и энергия, воздействующие на организм.

Существует значительное разнообразие понятия «среда» в зависимости от степени конкретизации. Так, внешняя среда рассматривается как совокупность сил и явлений природы, ее вещество и пространство, любая деятельность человека (организма), находящаяся вне рассматриваемого объекта или субъекта и необязательно непосредственно контактирующая с ним. Понятие окружающая среда – то же, что и среда внешняя, но она находится в непосредственном контакте с объектом или субъектом. Термин, очевидно, требует определяющего дополнения: среда, окружающая кого? что? Поэтому более правильно говорить «окружающая человека среда» и т.д. Различают также природную среду (сочетание естественных и измененных деятельностью человека факторов живой и неживой природы, которые проявляют эффект воздействия на организм), среду абиотическую (все силы и явления природы, происхождение которых прямо не связано с жизнедеятельностью ныне живущих организмов) и среду биотическую (силы и явления природы, которые обязаны своим происхождением жизнедеятельности ныне живущих организмов).

Имеет место и конкретное пространственное понимание среды, как непосредственного окружения организма, – это его среда обитания. К ней относят только те элементы, с которыми данный организм вступает в прямые или непрямые отношения, т.е. это все то, среди чего он живет.

В условиях Земли живые организмы освоили четыре основные среды обитания. Первой была водная среда, в которой возникла и распространилась жизнь. В последующем живые организмы овладели наземно-воздушной средой, далее они создали и заселили почву. Четвертой специфической средой жизни стали сами организмы, тела которых использовались паразитами или симбионтами.

Влияние среды на организм. Организм, испытывая потребность в притоке вещества, энергии и информации, полностью зависит от среды. Уместно здесь привести закон, открытый российским ученым К.Ф. Рулье: результаты развития (изменений) любого объекта (организма) определяются соотношением его внутренних особенностей и особенностей той среды, в которой он находится. Этот закон, иногда называемый первым экологическим законом жизни, имеет общее значение, так как в равной мере относится к живой и неживой материи, а также социальной сфере.

Эволюционно возникшее приспособление организмов к условиям среды, выражающееся в изменении их внешних и внутренних особенностей, носит название адаптации.

Способность к адаптациям – одно из основных свойств жизни вообще, поскольку обеспечивает саму возможность ее существования, возможность организмов выживать и размножаться. При этом адаптации способны проявляться на самых разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем.

Каждый организм реагирует на окружающую среду в соответствии со своей генетической конституцией. Правило соответствия условий среды генетической предопределенности организма гласит: до тех пор, пока среда, окружающая определенный вид организмов, соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям, этот вид может существовать. Резкое изменение условий среды обитания может привести к тому, что генетический аппарат вида не сможет приспособиться к новым условиям жизни. Сказанное в полной мере относится и к человеку.

Влияние живых организмов на среду. Организмы и сами способны существенно воздействовать на среду. Так, их жизнедеятельность значительно влияет на газовый состав атмосферы. Это связано, в частности, с тем, что в результате фотосинтеза зеленых растений в атмосферу поступает кислород. Диоксид углерода, напротив, извлекается из атмосферного воздуха растениями и вновь поступает туда в процессе разложения остатков погибших организмов.

На предел воздействия организмов на среду обитания указывает другой экологический закон жизни (Куражковский Ю.Н.): каждый вид организмов, потребляя из окружающей среды необходимые ему вещества и выделяя в нее продукты своей жизнедеятельности, изменяет ее таким образом, что среда обитания становится непригодной для его существования.

Таким образом, организмы испытывают воздействие постоянно меняющихся условий среды, но и сами способны изменять эти условия.


ТЕМА:Популяция в экосистеме.

Структура популяции. Понятие о виде

Распределение особей по территории, соотношение групп особей по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают соответствующую структуру популяции: пространственную, половую, возрастную и т.д. Структура формируется, с одной стороны, на основе общих биологических свойств видов, а с другой – под влиянием абиотических факторов среды и популяций других видов. Поэтому важно подчеркнуть: структура популяции всегда имеет откровенно приспособительный характер, она позволяет более оптимально использовать ресурсы.

Соотношение возрастных и половых групп, которые можно отнести к статическим показателям популяции, определяет многое в общей жизнеспособности и темпах роста популяции, является важной характеристикой ее структуры. Тщательный и постоянный анализ возрастного и полового состава популяций – главное условие для прогнозирования численности тех видов, которые человечество использует или с которыми вынуждено бороться.

Пространство, которое занимает популяция, дает ей необходимые для жизни условия. Однако каждая конкретная территория способна прокормить лишь определенное число особей. При этом на степень использования доступных природных ресурсов влияет не только общая численность популяции, но и размещение особей в пространстве. Иногда в природе встречается почти равномерное упорядоченное распределение особей на занимаемой территории, например, в чистых зарослях некоторых растений. Однако в силу неоднородности занимаемого пространства, особенностей биологии видов чаще всего члены популяции распределяются в пространстве неравномерно.

Систему взаимоотношений между членами одной популяции называют этологической или поведенческой структурой популяции. Рассмотрим наиболее характерные формы совместного существования особей в популяции.

Одиночный образ жизни ведут многие виды, например, ежи, сомы, щуки и т.д., но лишь на определенных стадиях жизненного цикла. Поэтому абсолютно одиночного существования организмов в природе не встречается, иначе погибли бы соответствующие популяции.

У искусственно изолированных особей заметно меняется уровень метаболизма, быстрее расходуются резервные вещества, не проявляется целый ряд инстинктов и ухудшается общая жизнеспособность. Под эффектом группы понимают оптимизацию физиологических процессов, ведущую к повышению жизнеспособности особей при их совместном существовании. Так, у овцы вне стада резко учащаются пульс и дыхание, а при виде приближающегося стада эти процессы нормализуются, и овца успокаивается. Характерно, что для выживания африканских слонов стадо должно состоять, по крайней мере, из 25 особей. Эффект группы состоит также в ускорении темпов роста животных, повышении плодовитости, более быстром образовании условных рефлексов, повышении средней продолжительности жизни индивидуума.

Изложенное позволяет понять, почему предъявляются повышенные требования при формировании групп космонавтов, отрядов специального назначения, экипажей, которые должны длительно находиться в замкнутом пространстве, либо длительно общаться друг с другом. При удачном подборе в таком коллективе явно проявляется «эффект группы», и он успешно справляется с поставленной задачей.

Семейный образ жизни резко усиливает связи между родителями и их потомством. Известное проявление этого – забота одного из родителей об отложенных яйцах или кормление самцом самки. При этом заботы о птенцах продолжаются до поднятия их на крыло, а у ряда крупных млекопитающих (медведей, тигров) детеныши воспитываются в семейных группах в течение нескольких лет, до наступления их половой зрелости.

Колония, будучи групповым поселением оседлых животных, может существовать как длительно, так и возникать лишь на период размножения (грачи, чайки, гагары и т.п.). Значительно более сложная форма колонии – поселения животных, в которых отдельные их жизненные функции выполняются сообща, что повышает вероятность выживания отдельных особей. Так, тревога, поднятая любой заметившей хищника птицей, мобилизует остальных и им удается его отогнать. Некоторые общественные насекомые – пчелы, муравьи, термиты организуют весьма сложные колонии – семьи. Здесь насекомые выполняют сообща много основных функций: защиты, размножения, обеспечения кормом себя и потомства, строительства и т.п., для чего осуществляют обязательное разделение труда и специализацию отдельных особей, в том числе разных возрастных групп.

Стая представляет собой временное объединение животных одного вида (насекомых, птиц, рыб, реже млекопитающих и др.). Стайность облегчает выполнение каких-либо функций в жизни вида, например, защиты от врагов, добычи пищи, миграции. Так, волчьим стаям удается справиться с крупными копытными (например, взрослым лосем), охота на которых в одиночку часто заканчивается гибелью самого хищника. В процессе групповой охоты вожак стаи «организует» засады, захват жертвы в кольцо и другие действия, что требует согласованности и координации действий всех членов стаи.

Стадо – это группа диких или домашних животных одного вида, обитающая на какой-либо территории (например, стадо оленей) или акватории. В стаде осуществляются все основные функции жизни: добывание корма, защита от хищников, миграции, размножение, воспитание молодняка и т.п. При этом основу группового поведения животных в стадах составляют взаимоотношения доминирования (главенства) – подчинения. Осуществив своеобразную «расстановку сил», животные уже не тратят лишней энергии на конфликты между отдельными особями, а группа в целом получает преимущества, подчиняясь наиболее сильным и опытным индивидуумам.

Одной из фундаментальных экологических характеристик популяции является ареал вида.

Протяженность популяционного ареала определяется биологией вида, особенно радиусом его индивидуальной активности перемещения. Так, популяции видов относительно крупных животных (рыб, млекопитающих, птиц и др.), которые могут преодолевать большие пространства, имеют больший ареал по сравнению с популяциями видов мелких животных с ограниченной подвижностью. Ареал способен пульсировать, т.е. он может расширяться или сокращаться даже в связи с сезоном года; существенное расширение границ ареала вида наблюдается при миграции и территориальной экспансии входящих в нее особей (наглядный пример здесь – способность огромных стай саранчи преодолевать тысячи км).

Динамика популяции – это процессы изменения ее основных биологических показателей во времени: численности особей, биомассы, структуры и др. Динамика популяции – одно из наиболее значимых биологических и экологических явлений. Образно говоря, жизнь популяции проявляется в ее динамике.

Любая популяция способна (теоретически) к неограниченному росту численности, если ее не лимитируют факторы внешней среды абиотического (прежде всего климат) и биотического (конкуренция, хищники, паразиты, болезни) происхождения. В таком случае скорость роста популяции будет определяться величиной биотического или репродуктивного потенциала.

Гомеостаз популяции+

Способность популяции поддерживать определенную численность своих особей называется гомеостазом популяции. В основе этого важнейшего, эволюционно приобретенного свойства лежат изменения физиологических особенностей, роста, поведения каждой особи в ответ на увеличение или уменьшение числа членов популяции, к которой эта особь принадлежит. Механизмы популяционного гомеостаза определяются экологической спецификой вида, его подвижностью, степенью воздействия хищников, паразитов и др. У одних видов они могут проявляться в жесткой форме, что приводит к гибели избытка особей, у других – в смягченной, например, в понижении плодовитости на основе условных рефлексов. Примером жестких форм внутривидовой конкуренции может служить явление самоизреживания у растений: при чрезмерной густоте всходов часть растений неминуемо погибает из-за угнетения физиологически более сильными соседями.