четверг, 21 апреля 2022 г.

 ПЯТНИЦА, 22.04.22 г. 401,403


ИНСТРУКЦИЯ ДЛЯ ТЕХ, КТО  НЕ МОЖЕТ НАЙТИ СВОЮ ГРУППУ: 

СПРАВА ЕСТЬ АРХИВ. В АРХИВЕ ПО-ПОРЯДКУ РАСПОЛОЖЕНЫ ДНИ НЕДЕЛИ. ТАМ ЖЕ ВИДНЫ ДАТЫ И  НОМЕРА ГРУПП. ВЫБИРАЕТЕ ДЕНЬ СО СВОЕЙ ГРУППОЙ,  И ОН ОТКРОЕТСЯ. УРОКИ ВЫЛОЖЕНЫ ПО РАСПИСАНИЮ. НА ОДНОЙ СТРАНИЦЕ ВЫЛОЖЕН ОДИН ДЕНЬ . ВНИМАНИЕ!!! На выполнение задания отводится 1 неделя. Моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

Критерии оценивания: Для получения положительной оценки обучающийся должен:    -соблюдать отведенное время; - разборчиво и правильно выполнить работу. Если работа будет прислана после указанного срока , оценка будет снижаться.

ГРУППА 401 ХИМИЯ 49,50

ТЕМА:Скорость химических реакций. Понятие о скорости химических реакций.  Зависимость скорости химических реакций от различных факторов: природы реагирующих веществ, их концентрации, температуры, поверхности соприкосновения и использования катализаторов.ТЕМА:Зависимость скорости химических реакций от различных факторов: природы реагирующих веществ, их концентрации, температуры, поверхности соприкосновения и использования катализаторов.Зависимость скорости взаимодействия соляной кислоты с металлами от их природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации. Зависимость скорости взаимодействия оксида меди(II) с серной кислотой от температуры.

Скорость химической реакции.


«Это

Почти неподвижности мука -

Мчаться куда-то со скоростью звука,

Зная прекрасно, что есть уже где-то

Некто,

Летящий

Со скоростью

Света! »

Леонид Мартынов

Ребята, сегодня на уроке у нас очень интересная и очень важная в изучении химических реакций тема. Но начать урок я хочу с интересных фактов:

- При кипячении воды, ее молекулы движутся со скоростью 650 метров в секунду.

- Ураган может двигаться со скоростью 125 миль в час.

- Ночью волосы растут медленно. Днём рост волос ускоряется. Между 10 и 11 часами скорость роста самая большая. Пик роста наступает между 14 и 16 часами.

- Кровь движется быстро в артериях (500 мм/с), медленнее в венах(150 мм/с), и еще медленнее в капиллярах(1мм/с).

-Самое медлительное млекопитающее в мире — ленивец. Он перемещается со скоростью около двух метров в минуту.

-Самые сильные ветра на Земле дуют в Антарктиде, в долине Виктории. Скорость ветра там достигает 215 метров в секунду.

Ребята, скажите, что объединяет эти научные факты? (в них говорится о скорости).

Следовательно, о чем мы будем говорить сегодня на уроке? (скорости)

 Сегодня мы будем говорить о скорости. Но не о той, с которой вы знакомились на уроках физики и математики, а о скорости химических реакций.  Итак, тема сегодняшнего урока «Скорость химических реакций»(запишите тему в тетрадь).

Как вы думаете, какие вопросы помогут нам раскрыть тему урока?

(1. Что такое скорость химических реакций? 2. От чего зависит скорость химических реакций?).


ПОСМОТРИТЕ ВНИМАТЕЛЬНО ВИДЕО и ответьте на вопросы.







1. Что такое скорость химических реакций? 2. От чего зависит скорость химических реакций?

На уроке проводятся эксперименты, демонстрирующие зависимость скорости химической реакции от различных факторов. Из материалов данного урока вы узнаете, как влияют на скорость химической реакции степень измельчения, концентрация и природа веществ, а также температура и наличие катализатора.


ПРОЧИТАЙТЕ, ПРОСМОТРИТЕ видео (ПО ВЫПЛЫВАЮЩИМ ССЫЛКАМ) И ЗАПИШИТЕ, ОТ ЧЕГО ЗАВИСИТ СКОРОСТЬ ПРОТЕКАНИЯ РЕАКЦИИ.
  • Изучение влияния природы кислоты

В одну пробирку наливаем раствор соляной кислоты, а в другую – столько же уксусной (примерно одинаковой концентрации). Одновременно помещаем в них по грануле цинка. В обеих пробирках протекает реакция замещения с выделением водорода:

Zn + 2HCl = ZnCl2 + H2

Zn + 2CH3COOH = Zn(CH3CОО)2 + H2

В пробирке с уксусной кислотой водород выделяется с меньшей скоростью. Это можно объяснить тем, что уксусная кислота обладает меньшими кислотными свойствами по сравнению с соляной кислотой.

  • Изучение влияния природы металла

В две пробирки нальем одинаковое количество соляной кислоты и одновременно поместим в них по кусочку металлов разной природы: цинка и магния. Уравнения данных реакций:

Zn + 2HCl = ZnCl2 + H2

Mg + 2HCl = MgCl2 + H2

Реакция соляной кислоты с магнием протекает с большей скоростью, так как интенсивнее выделяется водород. Магний – более активный металл, чем цинк (магний стоит в ряду напряжений левее цинка). Рис. 1.

Результаты опыта по взаимодействия цинка (слева) и магния (справа) с соляной кислотой

Рис. 1. Результаты опыта по взаимодействия цинка (слева) и магния (справа) с соляной кислотой

ОПЫТ № 2. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ПЛОЩАДИ ПОВЕРХНОСТИ СОПРИКОСНОВЕНИЯ РЕАГИРУЮЩИХ ВЕЩЕСТВ

  • Изучение влияния степени измельчения вещества (поверхности соприкосновения реагирующих веществ).

В две пробирки нальем примерно по 2 мл раствора медного купороса. Одновременно поместим в одну пробирку кусок железной проволоки, а в другую – железный порошок. В обеих пробирках протекает реакция замещения в соответствии с уравнением:

Fe + CuSO4 = FeSO+ Cu↓

О протекании реакции замещения между сульфатом меди (II) и железом можно судить по выделению из раствора вещества красно-бурого цвета – меди. Признаки реакции быстрее появились в пробирке с порошком железа, т. к. порошок железа имеет большую площадь поверхности соприкосновения с раствором медного купороса. Мы видим, что измельчение вещества приводит к повышению скорости реакции.

Результаты опыта по взаимодействия железного гвоздя и железного порошка с раствором CuSO4

Рис. 2. Результаты опыта по взаимодействия железного гвоздя и железного порошка с раствором CuSO4

ОПЫТ № 3. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ ИСХОДНЫХ ВЕЩЕСТВ

В две пробирки поместим по 2 гранулы цинка и осторожно прильем растворы уксусной кислоты: в первую пробирку – 9%-ный уксус, а во вторую – 70%-ную кислоту. Реакция протекает быстрее в той пробирке, в которой больше концентрация уксусной кислоты.

ОПЫТ № 4. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ

В две пробирки с соляной кислотой одинаковой концентрации добавим по 1 грануле цинка. Одну из пробирок поместим в стакан с горячей водой. Наблюдаем, что при нагревании скорость выделения водорода увеличивается. Скорость реакции зависит от температуры, при которой она проводится.

ОПЫТ № 5. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ УЧАСТИЯ КАТАЛИЗАТОРА

На дно стакана нальем 3%-ный раствор перекиси водорода. Пероксид водорода – очень непрочное вещество и легко разлагается на воду и кислород:

2H2O2 = 2H2O + O2↑.

При обычных условиях реакция разложения пероксида водорода протекает медленно, признаков реакции (т. е. выделения пузырьков газа) мы не наблюдаем. Добавим в стакан с перекисью водорода немного черного порошка оксида марганца (IV). Наблюдаем интенсивное выделение пузырьков газа. Внесем в стакан тлеющую лучинку – она разгорается, следовательно, выделяющийся газ – кислород. Почему при внесении в стакан оксида марганца скорость реакции увеличилась? Дело в том, что оксид марганца является катализатором реакции разложения пероксида водорода. Катализатор, участвуя в реакции, ускоряет ее, но сам в ней не расходуется.

Разложение пероксида водорода под действием катализатора MnO2

Рис. 3. Разложение пероксида водорода под действием катализатора MnO2

 

Образцы решений задач по теме "Скорость химической реакции"

Задача №1

Реакция протекает по уравнению А+В = 2С. Начальная концентрация вещества А равна 0,22 моль/л, а через 10 с — 0,215 моль/л. Вычислите среднюю скорость реакции.

Решение:

Используем формулу для расчёта

υ = ± ΔС/Δτ = ± (0,215-0,22)/(10-0) = 0,0005 моль/л ∙ с

Задача №2

Вычислите, во сколько раз увеличится скорость реакции при повышении температуры от 30 до 70 ∘ С, если температурный коэффициент скорости равен 2.

Решение:

По правилу Вант-Гоффа

υ=υ0·γ (t2-t1)/10

По условию задачи требуется определить υ/υ0:

υ/υ0=2 (70-30)/10 = 24 = 16

Задача №3

Запишите кинетическое уравнение для следующих уравнений реакций:

А) S(тв) + O2 (г) = SO2 (г)

Б) 2SO2 (г) + O2 (г) = 2SO3 (ж)

Решение:

Согласно закону действующих масс, который действует для газов и жидкостей:

υ = к1 C (O2)

υ = к2 C2(SO2)·C (O2)

Задача №4

Как изменится скорость реакции:

S (тв) + O2 (г) = SO2 (г)

при увеличении давления в системе в 4 раза?

Решение:

  • Запишем кинетическое уравнение для реакции до повышения давления в системе. Обозначим концентрацию кислорода

С(О2) = а, концентрация серы - твёрдого вещества не учитывается.

υ = к1 а

  • При повышении давления в 4 раза, объём уменьшается в 4 раза, следовательно концентрация газа кислорода увеличится в 4 раза и кинетическое уравнение примет вид:

υ' = к1 4а

  • Определяем, во сколько раз возрастёт скорость реакции:
υ' /υ = к1 4а / к1 а = 4
Следовательно, при повышении давления в 4 раза, скорость данной реакции увеличится в 4 раза.

Задача №5

Как изменится скорость реакции:

2SО2 (г) + O2 (г) = 2SO3 (г)

при увеличении давления в системе в 2 раза?

Решение:

  • Запишем кинетическое уравнение для реакции до повышения давления в системе. Обозначим концентрацию SO2

С(SО2) = а, концентрация кислорода C(O2) = b.

υ = к1 а2·b

  • При повышении давления в 2 раза, объём уменьшается в 2 раза, следовательно концентрация газа кислорода и SO2 увеличится в 2 раза и кинетическое уравнение примет вид:

υ' = к1 (2а)2·2b = к12·2b= к12·b

  • Определяем, во сколько раз возрастёт скорость реакции:
υ' /υ = к1 8а2·b / к1 а2·b =8
Следовательно, при повышении давления в 2 раза, скорость данной реакции увеличится в 8 раз.
Задача №6

При температуре 10 ºС реакция протекает за 5 мин, при 20ºС – за 1 мин. Рассчитайте температурный коэффициент скорости реакции.

Дано:

t0= 10 ºС

t= 20ºС

τ0= 300c

τ= 60c

γ=?

Решение:

1) При условии, что концентрация вещества (С), вступившего в реакцию, постоянна:

При температуре 10 ºС скорость реакции равна υ0=∆C/∆τ0,

υ0=∆C/300, ∆C= 300υ0

При температуре 30 ºС скорость реакции равна υ=∆C/∆τ,

υ=∆C/60, ∆C= 60υ.  Следовательно, 300υ0=60υ, а   υ/υ0=300/60=5.

2) По правилу Вант Гоффа: υ= υ0γt/10, υ/υ0= γt/10

3)  Согласно рассуждениям (1)  и (2), получим γ(20-10)/10γ=5

ГРУППА 403 ХИМИЯ 65

ТЕМА:Органической химией изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особенная «жизненная сила» - vis vitalis, которая действует только в живых организмах, а химики способны лишь выделять органические вещества из продуктов жизнедеятельности , но не могут синтезировать их. Поэтому шведский химик Й.Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы».Именно Берцелиус ввел понятие органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» -витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ – дициана и воды:


  

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата  аммония, получил мочевину – продут жизнедеятельности живых организмов



Изумлённый таким результатом, Вёлер написал Берцелиусу: «Должен сказать вам, что я умею приготовить мочевину, не нуждаясь не в почке, ни в живом организме вообще»

В последние годы блестящие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Берло (1854), сахаристых веществ А.Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

 

"Органическая химия есть химия углеводородов и их производных, т.е. продуктов, образующихся при замене водорода другими атомами или группами атомов".

 

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах…  Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях… Ни  в  одном из элементов… способности к усложнению не развито в такой степени, как в углероде… Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) – в растения (фотосинтез), из растений – в животные организмы, из живого – в мертвое, из мертвого – в живое…(рис 1).



Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1.      Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических – почти 18млн (табл. 1).

 

Таблица 1. Рост числа известных органических соединений

Год

Число известных органических соединений

1880

12 000

1910

150 000

1940

500 000

1960

1 000000

1970

2 000000

1980

5 500 000

2000

18 000000

 

2.      В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3.      Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводороды, нуклеиновые кислоты и. т. д.

4.      Органические вещества можно расположить в ряд сходных по составу, строению и свойствам – гомологов

 

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическими свойствам, где каждый член отличается от предыдущего на гомологическую разность СН2

 

5.      Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причины  различий в свойствах изомеров?

 

Изомерия – это явление существования разных веществ –изомеров с одинаковым качественным и количественным составом, т.е. одинаковой молекулярной формулой.

 

Величайшим обобщением знаний о неорганических  веществах является Периодический закон и Периодическая  система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служат теория строения органических соединений А. М. Бутлерова. Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления». В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни.  В любом организме, в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т.е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и.т.д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2)

Развитие биотехнологии, т.е. получения органических веществ не из живых организмов, а из клеточных культур (например, получение белков с помощью дрожжей на основе углеводородного сырья), генной инженерии, т.е. синтеза важнейших соединений белковой природы (например, синтез инсулина, интерферона), создание новых видов высокопродуктивных организмов было бы невозможно без достижения органической химии.

 

Таблица 2. Некоторые природные и синтетические вещества.

Природные вещества

Синтетические вещества

Белки, углеводы, жиры

Пищевые добавки, стимуляторы

Витамины

Синтетические витамины

Ферменты

Катализаторы

Гормоны

Гормональные препараты

Лекарства растительного и природного происхождения

Синтетические лекарства

Предмет органической химии. Природные, искусственные и синтетические органические вещества. Сравнение органических веществ с неорганическими.

 СРЕДА , 20.04.22 г.  408, 303

ГРУППА 408 БИОЛОГИЯ 34

ТЕМА: Дигибридное скрещивание.

Закон независимого наследования признаков. Дигибридное скрещивание

Изучение Грегором Менделем наследования одной пары аллельных генов позволило выявить ряд важных генетических закономерностей. Однако, организмы одного вида очень схожие по внешним признакам имеют множество отличий. Даже растения, размножающиеся путём самоопыления, животные, развивающиеся в результате почкования или фрагментации, однояйцевые близнецы, обладающие одинаковой наследственной информацией, имеют ряд признаков, отличающих их друг от друга.

Для установления закономерностей наследования двух пар признаков, Мендель провел дигибридное скрещивание. Скрещивание организмов, отличающихся по многим признакам, называется полигибридным.

Каждому организму присуще огромное количество признаков, контролируемое таким же количеством генов. Но число хромосом в клетках ограничено. Это значит, что каждая хромосома должна нести большое число генов. Результаты дигибридного скрещивания будут зависеть от того, расположены ли гены, контролирующие развитие исследуемых признаков в одной хромосоме или в разных. Как выяснилось гораздо позднее, Мендель наблюдал наследование признаков, за которые отвечают гены, находящиеся в разных хромосомах.

Мендель провёл скрещивание растений гороха, которые отличались одновременно по двум признакам – по окраске (ген А), и форме семян (ген В (б)). Для использования в качестве родительских организмов он вывел две гомозиготные «чистые линии» растений: одну с двумя доминантными признаками – жёлтыми и гладкими семенами, вторую – с двумя рецессивными признаками – зелёными и морщинистыми семенами. Все гибриды первого поколения были единообразны и имели жёлтые гладкие семена.

Для удобства анализа результатов дигибридного скрещивания американский исследователь РЕджинальд Пеннет предложил записывать данные в таблицу, которая получила название решётки Пеннета.

Над решёткой перечислены все возможные варианты гамет, которые может произвести отцовский организм, а слева по вертикали– все варианты материнских гамет. 4 варианта материнских и 4 варианта отцовских гамет при оплодотворении могут дать 16 вариантов зигот. Именно столько ячеек в решётке Пеннета. При образовании половых клеток у гибридов из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения хромосом в первом делении мейоза ген А с равной вероятностью может попасть в одну гамету с геном В или с геном b, также и ген а может оказаться в одной гамете с геном В или с геном b.

В ячейках на пересечении строк и столбцов последовательно записаны все возможные варианты слияния гамет. При оплодотворении гаметы соединяются в случайном порядке, но с равной вероятностью для каждой. В результате случайных комбинаций четырёх типов гамет, образующихся у растений из первого поколения – АВ, Аb, aBab(читается: А большое Б большое, А большое Б малое и т.д.), во втором поколении образуется 9 разных генотипов, которые, однако, проявляются в виде четырёх фенотипов: жёлтые гладкие, жёлтые морщинистые, зелёные гладкие и зелёные морщинистые в соотношении 9:3:3:1.

Гибриды с жёлтыми морщинистыми и зелёными гладкими семенами обладают иными, отличными от родительских форм комбинациями признаков. Такая форма изменчивости получила название комбинативной изменчивости.

Проведя анализ по каждому признаку – по цвету и по форме семян отдельно, Мендель получил соотношение 3:1, что закономерно для моногибридного скрещивания. Т.е. можно сказать, что дигибридное скрещивание – это два моногибридных скрещивания, которые как бы накладываются друг на друга и проходят независимо друг от друга.  На основании полученных результатов был сделан вывод о независимом характере наследования окраски и формы семян – признаков, контролируемых неаллельными генами. Это правило получило название третьего закона Менделя, или закона независимого наследования признаков. Формулируется он следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум или более парам альтернативных признаков, гены и контролируемые ими признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Этот закон имеет ограниченное применение и действует только в отношении генов, локализованных в негомологичных хромосомах и не влияющих друг на друга.

По законам Менделя проводится анализ расщепления и при полигибридном скрещивании, когда организмы отличаются по трём и более признакам.

Горох имеет 7 пар хромосом и гены каждого из 7 пар признаков были расположены в негомологических хромосомах.

Закономерности наследования признаков, установленные Грегором Менделем на растениях гороха, применимы и ко всем другим живым организмам.

Однако, нужно учитывать, что генетические законы носят статистических характер. К примеру, если в семье оба родителя кареглазые, гетерозиготны по данному признаку и у них четверо детей, то это вовсе не значит, что соотношение генотипов потомства будет строго 1:2:1, т.е. один ребёнок будет гомозиготен по доминантному признаку и иметь карие глаза, двое – гетерозиготны и так же с карими глазами и один – гомозиготен по рецессивному признаку и голубоглазый. Может случиться так, что все потомки будут гомозиготами или гетерозиготами, например, трое детей окажутся голубоглазыми, а один кареглазым, и т.д. Такое сочетание не является нарушением законов Менделя и связано с малой выборкой потомства. Чем больше гибридов производят родительские организмы, тем точнее соотношение их генотипов и фенотипов будет соответствовать классической формуле.

В опытах с горохом Мендель получал во втором поколении очень большое количество семян, что позволило на практике получить близкое к теоретическому расщепление – 3 :1.

В то время, когда Мендель проводил свои опыты с горохом, наука не обладала точными сведениями о хромосомах, генах, о процессах, происходящих во время митоза и мейоза. Правильный выбор объекта исследования и методики проведения экспериментов, а также точный математический анализ результатов позволили Менделю сделать выводы о том, что все признаки организма определяются отдельными наследственными факторами, передающимися из поколение в поколение по определённым закономерностям, которые он и сформулировал.

 


ГРУППА 303 ХИМИЯ 11

ТЕМА: Альдегиды. Понятие об альдегидах. Альдегидная группа как функциональная. Формальдегид и его свойства.

 Альдегиды - органические вещества, молекулы которых содержат карбонильную группу ——, связанную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов  или R—CHO. Функциональная группа альдегидов (—CHO) называется альдегидной группой.




Альдегиды и кетоны называются карбонильными соединениями, их общая формула - CnH2nO.

Изомеры и гомологи

г

о

м

о

л

о

г

и
HCHO
метаналь (формальдегид, муравьиный альдегид)
CH3CHO
этаналь (ацетальдегид, уксусный альдегид)
CH3CH2CHO
пропаналь (пропионовый альдегид)
CH3—CO—CH3
пропанон (ацетон)
CH3CH2CH2CHO
бутаналь (масляный альдегид)

2-метилпропаналь
CH3—CO—CH2CH3
бутанон (метилэтилкетон)
и з о м е р ы


В молекулах альдегидов, а тем более кетонов, в отличие от спиртов нет атомов водорода со значительным положительным частичным зарядом, поэтому между молекулами как альдегидов, так и кетонов нет водородных связей.


Химические свойства

Химические свойства альдегидов и кетонов в значительной степени обусловлены наличием в их молекулах сильно полярной карбонильной группы (связь  поляризована в сторону атома кислорода). Чем больше частичный заряд (+) на атоме углерода этой группы, тем выше активность соединения.

  1. Горение:
    2CH3CHO + 5O2  4CO2 + 4H2O
    2CH3COCH3 + 9O2  6CO2 + 6H2O


  2. Присоединение (по двойной связи карбонильной группы).
    В ряду HCHO  RCHO  RCOR' склонность к реакциям присоединения уменьшается. Это связано с наличием и числом углеводородных радикалов, связанных с атомом углерода карбонильной группы.

    а) Гидрирование (восстановление водородом):
    HCHO + H2  CH3OH
    CH3—CO—CH3 + H2  CH3—CH(OH)—CH3

    Из альдегидов при этом получаются первичные спирты, а из кетонов - вторичные.

  3. Окисление:
    CH3CHO + Ag2 2Ag + CH3COOH (реакция "серебряного зеркала" - качественная реакция)
    HCHO + 2Cu(OH)2  2H2O + Cu2O + HCOOH (образуется красный осадок - качественная реакция)

    Кетоны слабыми окислителями не окисляются.

  4. Замещение атомов водорода в углеводородном радикале (замещение происходит в -положение, т. е. замещается атом водорода у 2-го атома углерода):
    32()1
    CH3—CH2—CHO+ Cl2  CH3—CHCl—CHO + HCl

    Формальдеги́д (от лат. formīca — «муравей»[4]) — органическое соединение, бесцветный газ с резким неприятным запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритантконтаминантканцерогенен. В больших концентрациях ядовит.

    Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Он, в основном, используется в производстве смол — бакелита, галалита (в сочетании с мочевиной, меламином и фенолом), для дубления кож, протравливания зерна. Также из него синтезируют лекарственные средства (уротропин) используют как консервант биологических препаратов (благодаря способности свертывать белок).