вторник, 7 декабря 2021 г.

 СРЕДА  08.12.21 г.  306 403,  408

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 306 ХИМИЯ 37, 38


 ТЕМА: Карбоновые кислоты. Понятие о карбоновых кислотах. Карбоксильная группа как функциональная. Гомологический ряд предельных однооснóвных карбоновых кислот. Получение карбоновых кислот окислением альдегидов 

Карбоновые кислоты - органические вещества, молекулы которых содержат одну или несколько карбоксильных групп.

Карбоксильная группа  (сокращенно —COOH) - функциональная группа карбоновых кислот - состоит из карбонильной группы и связанной с ней гидроксильной группы.

По числу карбоксильных групп карбоновые кислоты делятся на одноосновные, двухосновные и т.д.

Общая формула одноосновных карбоновых кислот R—COOH. Пример двухосновной кислоты - щавелевая кислота HOOC—COOH.

По типу радикала карбоновые кислоты делятся на предельные (например, уксусная кислота CH3COOH), непредельные [например, акриловая кислота CH2=CH—COOH, олеиновая CH3—(CH2)7—CH=CH—(CH2)7—COOH] и ароматические (например, бензойная C6H5—COOH).

Изомеры и гомологи

Одноосновные предельные карбоновые кислоты R—COOH являются изомерами сложных эфиров  (сокращенно R'—COOR'') с тем же числом атомов углерода. Общая формула и тех, и других CnH2nO2.

г

о

м

о

л

о

г

и
HCOOH
метановая (муравьиная)
CH3COOH
этановая (уксусная)
HCOOCH3
метиловый эфир муравьиной кислоты
CH3CH2COOH
пропановая (пропионовая)
HCOOCH2CH3
этиловый эфир муравьиной кислоты
CH3COOCH3
метиловый эфир уксусной кислоты
CH3(CH2)2COOH
бутановая (масляная)

2-метилпропановая
HCOOCH2CH2CH3
пропиловый эфир муравьиной кислоты
CH3COOCH2CH3
этиловый эфир уксусной кислоты
CH3CH2COOCH3
метиловый эфир пропионовой кислоты
и з о м е р ы

Алгоритм составления названий карбоновых кислот

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, включающая атом углерода карбоксильной группы.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс "-ов", окончание "-ая" и слово "кислота".

В молекулах карбоновых кислот p-электроны атомов кислорода гидроксильной группы взаимодействуют с электронами -связи карбонильной группы, в результате чего возрастает полярность связи O—H, упрочняется -связь в карбонильной группе, уменьшается частичный заряд (+) на атоме углерода и увеличивается частичный заряд (+) на атоме водорода.

Последнее способствует образованию прочных водородных связей между молекулами карбоновых кислот.

Физические свойства предельных одноосновных карбоновых кислот в значительной степени обусловлены наличием между молекулами прочных водородных связей (более прочных, чем между молекулами спиртов). Поэтому температуры кипения и растворимость в воде у кислот больше, чем у соответствующих спиртов.

Химические свойства кислот



Упрочнение -связи в карбонильной группе приводит к тому, что реакции присоединения для карбоновых кислот нехарактерны.

  1. Горение:
    CH3COOH + 2O2  2CO2 + 2H2O


  2. Кислотные свойства.
    Из-за высокой полярности связи O-H карбоновые кислоты в водном растворе заметно диссоциируют (точнее, обратимо с ней реагируют):

    HCOOH  HCOO- + H+ (точнее HCOOH + H2 HCOO- + H3O+)

    Все карбоновые кислоты - слабые электролиты. С увеличением числа атомов углерода сила кислот убывает (из-за снижения полярности связи O-H); напротив, введение атомов галогена в углеводородный радикал приводит к возрастанию силы кислоты. Так, в ряду

    HCOOH  CH3COOH  C2H5COOH

    сила кислот снижается, а в ряду

    CH3COOHCH2ClCOOHCHCl2COOHCCl3COOH
    уксусная кислотамонохлоруксусная кислотадихлоруксусная кислотатрихлоруксусная кислота

    - возрастает.

    Карбоновые кислоты проявляют все свойства, присущие слабым кислотам:

    Mg + 2CH3COOH  (CH3COO)2Mg + H2
    CaO + 2CH3COOH  (CH3COO)2Ca + H2O
    NaOH + CH3COOH  CH3COONa + H2O
    K2CO3 + 2CH3COOH  2CH3COOK + H2O + CO2

  3. Этерификация (реакция карбоновых кислот со спиртами, приводящая к образованию сложного эфира):
    + H2O
    муравьиная кислотаэтанолэтиловый эфир
    муравьиной кислоты

    В реакцию этерификации могут вступать и многоатомные спирты, например, глицерин. Сложные эфиры, образованные глицерином и высшими карбоновыми кислотами (жирными кислотами) - это жиры.

    ++ 3H2O
    глицеринкарбоновые кислотытриглицерид


    Жиры представляют собой смеси триглицеридов. Предельные жирные кислоты (пальмитиновая C15H31COOH, стеариновая C17H35COOH) образуют твердые жиры животного происхождения, а непредельные (олеиновая C17H33COOH, линолевая C17H31COOH и др.) - жидкие жиры (масла) растительного происхождения.

  4. Замещение в углеводородном радикале:
    CH3—CH2—COOH+ Cl2CH3—CHCl—COOH+ HCl
    пропионовая кислота-хлорпропионовая кислота

    Замещение протекает в -положение.

    Особенность муравьиной кислоты HCOOH состоит в том, что это вещество - двуфункциональное соединение, оно одновременно является и карбоновой кислотой, и альдегидом:

    Поэтому муравьиная кислота кроме всего прочего реагирует и с аммиачным раствором оксида серебра (реакция серебряного зеркала; качественная реакция):
    HCOOH + Ag2O(аммиачный раствор)  CO2 + H2O + 2Ag

Получение карбоновых кислот

  1. Окисление альдегидов.
    В промышленности: 2RCHO + O2  2RCOOH

    Лабораторные окислители: Ag2O, Cu(OH)2, KMnO4, K2Cr2O7 и др.

  2. Окисление спиртов: RCH2OH + O2  RCOOH + H2O

  3. Окисление углеводородов: 2C4H10 + 5O2  4CH3COOH + 2H2O

  4. Из солей (лабораторный способ): CH3COONaкр. + H2SO4 конц.  CH3COOH + NaHSO4

ТЕМАХимические свойства уксусной кислоты: общие свойства с минеральными кислотами и реакция этерификации. 

Свойства уксусной кислоты, общие со свойствами минеральных кислот.

 Применение уксусной кислоты на основе свойств. 

ФИЗИЧЕСКИЕ СВОЙСТВА

Уксусная кислота (CH3COOH) – это концентрированный уксус, знакомый человечеству с давних времён. Его изготовляли путём брожения вина, т.е. углеводов и спиртов.

По физическим свойствам уксусная кислота – бесцветная жидкость с кислым вкусом и резким запахом. Попадание жидкости на слизистые оболочки вызывает химический ожог. Уксусная кислота обладает гигроскопичностью, т.е. способна поглощать водяные пары. Хорошо растворима в воде.



Рис. 1. Уксусная кислота.

Основные физические свойства уксуса:

  • температура плавления – 16,75°C;
  • плотность – 1,0492 г/см3;
  • температура кипения – 118,1°C;
  • молярная масса – 60,05 г/моль;
  • теплота сгорания – 876,1 кДж/моль.

В уксусе растворяются неорганические вещества и газы, например, бескислородные кислоты – HF, HCl, HBr.

ПОЛУЧЕНИЕ

Способы получения уксусной кислоты:

  • из ацетальдегида путём окисления атмосферным кислородом в присутствии катализатора Mn(CH3COO)2 и высокой температуре (50-60°С) – 2CH3CHO + O2 → 2CH3COOH;
  • из метанола и угарного газа в присутствии катализаторов (Rh или Ir) – CH3OH + CO → CH3COOH;
  • из н-бутана путём окисления в присутствии катализатора при давлении 50 атм и температуре 200°C – 2CH3CH2CH2CH3 + 5O2 → 4CH3COOH + 2H2O.


Рис. 2. Графическая формула уксусной кислоты.

Уравнение брожения выглядит следующим образом – СН3СН2ОН + О2 → СН3СООН + Н2О. В качестве сырья используется сок или вино, кислород и ферменты бактерий или дрожжей.

ХИМИЧЕСКИЕ СВОЙСТВА

Уксусная кислота проявляет слабые кислотные свойства. Основные реакции уксусной кислоты с различными веществами описаны в таблице.

Взаимодействие

Что образуется

Пример

С металлами

Соль, водород

Mg + 2CH3COOH → (CH3COO)2Mg + H2

С оксидами

Соль, вода

CaO + 2CH3COOH → (CH3COO)2Ca + H2O

С основаниями

Соль, вода

CH3COOH + NaOH → CH3COONa + H2O

С солью

Соль, углекислый газ, вода

2CH3COOH + K2CO3 → 2CH3COOK + CO2 + H2O

С неметаллами (реакция замещения)

Органическая и неорганическая кислоты

– CH3COOH + Cl2 → CH2ClCOOH (хлоруксусная кислота) + HCl;

– CH3COOH + F2 → CH2FCOOH (фторуксусная кислота) + HF;

– CH3COOH + I2 → CH2ICOOH (иодуксусная кислота) + HI

С кислородом (реакция окисления)

Углекислый газ и вода

CH3COOH + 2O2 → 2CO2 + 2H2O

Эфиры и соли, которые образует уксусная кислота, называются ацетатами.

ПРИМЕНЕНИЕ

Уксусная кислота широко применяется в различных отраслях:

  • в фармацевтике – входит в состав лекарственных препаратов;
  • в химической промышленности – используется для производства ацетона, красителей, ацетилцеллюлозы;
  • в пищевой промышленности – применяется для консервации и вкуса;
  • в лёгкой промышленности – используется для закрепления краски на ткани.

Уксусная кислота является пищевой добавкой под маркировкой Е260.



Рис. 3. Использование уксусной кислоты.

ЧТО МЫ УЗНАЛИ?

CH3COOH – уксусная кислота, получаемая из ацетальдегида, метанола, н-бутана. Это бесцветная жидкость с кислым вкусом и резким запахом. Из разбавленной уксусной кислоты производят уксус. Кислота обладает слабыми кислотными свойствами и реагирует с металлами, неметаллами, оксидами, основаниями, солями, кислородом. Уксусная кислота широко применяется в фармацевтике, пищевой, химической и лёгкой промышленности.

ГРУППА 403 биология 35, 36

 Тема: Сцепленное наследование генов. Отношения ген-признак.

Сцепление генов - это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил. Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках ее тела, находится только 4 пары хромосом и имеет место высокая скорость плодовитости (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана).

Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

На рисунке 1:

Слева: расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется. 

Справа: расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В, поэтому сцепление не
полное, хромосомы в гаметах образуются четырех типов - 2 идентичные             родительским (некроссоверные) + 2 кроссоверных варианта. 

Рис. 1


Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).

 

  Пример, основанный на опытах Моргана

Рисунок 2
Фенотипы 
А-серое тело, нормальные крылья (повторяет материнскую форму) Б-тёмное тело, короткие крылья (повторяет отцовскую форму) В-серое тело, короткие крылья (отличается от родителей)
Г-тёмное тело, нормальные крылья (отличается от родителей)

В и Г получены в результате кроссинговера в мейозе. 

Рис. 2



«Гены, расположенные в одной хромосоме, наследуются совместно». 

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, - доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья - Сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т.е. они находятся в одной хромосоме. наследование сцепленных генов называют - сцепленное наследование.

Сцепление может нарушаться. Это доказывают особи В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

На рисунке 3 опыт Моргана отображен подробно.


Рис. 3


Несцепленное наследование:  два гена находятся в разных хромосомах,  гетерозигота с равной вероятностью дает четыре типа гамет:

Сцепленное наследование: два гена находятся в одной хромосоме.

а) При полном сцеплении гетерозигота дает только два типа гамет

б) При неполном сцеплении гетрозигота дает четыре типа гамет, но не с равной вероятностью. 

На вышесказанном строится 

хромосомная теория наследственности Моргана:

1. Гены находятся в хромосомах и расположены в линейной последовательности на определенных расстояниях друг от друга.

2. Гены, расположенные в одной хромосоме, составляют группу сцепления. Число групп сцепления = гаплоидному числу хромосом. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно (т.е. в тех же сочетаниях, в которых они были в хромосомах исходных родительских форм)

3. Новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами. Кроссинговер бывает одинарным (самый частый), двойным, множественным.

4. Учитывая линейное расположение генов в хромосоме и частоту кроссинговера как показателя расстояния между генами, можно построить карты хромосом. За единицу расстояния между генами принята частота кроссинговера = 1% (морганида, сантиморган, сМ).

Сцепленными с полом называются признаки, гены которых расположены не в аутосоме (неполовой хромосоме), а в гетеросоме (половой хромосоме).

Схема решения задач на наследование признаков, сцепленных с полом, иная, чем на аутосомное моногибридное скрещивание. В случае, если ген сцеплен с Х-хромосомой, он может передаваться от отца только дочерям, а от матери в равной степени и дочерям, и сыновьям. Если ген сцеплен с Х-хромосомой и является рецессивным, то у самки он проявляется только в гомозиготном состоянии. У самцов второй Х-хромосомы нет, поэтому такой ген проявляется всегда.

При решении задач этого типа используются не символы генов (АаВb), как при аутосомном наследовании, а символы половых хромосом XY с указанием локализованных в них генов (XАXа).

Аномалии, сцепленные с полом, чаще контролируются рецессивными генами, локализованы в Х-хромосоме и проявляются при генотипе ХY (т.е. у самцов млекопитающих и самок птиц).

Выше были рассмотрены примеры, где ген, сцепленный с полом, располагался на Х-хромосоме, но есть гены, локализованные на Y-хромосоме. У видов, у которых мужской пол гетерогаметен, этот ген может предаваться только самцам. У человека ген одного из видов синдактилии, выражающейся в образовании перепонки между 2 и 3 пальцами на ноге, локализован на Y-хромосоме, поэтому возникает только у мужчин. Известна еще одна аномалия - гипертрихоз края ушной раковины (ряды волос на ухе), передающиеся по такому же механизму. В изучаемой семье с этой аномалией она передавалась в пяти поколениях по мужской линии. Другим примером наследования, сцепленного с Y-хромосомой, является наследование перепонки между пальцами ног

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Определите признаки, характеризующий организм.

Тип вариантов ответов: (Текстовые, Графические, Комбинированные).

Варианты ответов:

1) кот

2) генотип ХВХВ

3) кошка

4) генотип ХВХь

5) генотип ХВУ

6) генотип ХьУ

Правильные варианты:

3) кошка

4) генотип ХВХь

Подсказка: решите задачу. Какое потомство ожидается от рыжего кота (XbУ) и черной кошки (XBXB)?

Задание 2.

Используя конспект урока, найдите и выделите цветом по вертикали и горизонтали в филвордеосновные понятия «теории сцепленного наследования генов».

Тип вариантов ответов: (Текстовые,Графические, Комбинированные):

Правильный вариант:Морган, кроссинговер, морганида, локус, дрозофила.

Подсказка: Все понятия связаны со сцепленным наследованием генов.


 

тема:Взаимодействие генотипа и среды. Генетические основы поведения.

Генотип как целостная система.

Термин генотип предложен в 1909 г. датским генетиком Вильгельмом Иогансеном. Он же ввел термины: ген, аллель, фенотип, линия, чистая линия, популяция.

Генотип – это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов.

Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов.

Ген, как единица наследственности, имеет ряд свойств:

дискретность действия - развитие различных признаков контролируется разными генами, находящимися в различных локусах хромосом;

стабильность– передача наследственной информации в неизменном виде (при отсутствии мутаций);

лабильность(неустойчивость) – способность к мутациям;

специфичность- каждый ген отвечает за развитие определенного признака;

плейотропность- один ген может отвечать за несколько признаков. Например, синдром Марфана характеризующийся «паучими пальцами», высоким сводом стопы, развитием аневризмы аорты связан с дефектом развития соединительной ткани;

экспрессивность- степень выраженности признака (полимерия);

пенентрантность- частота встречаемости;

способность вступать во взаимодействие другими неаллельными генами.

Гены действуют на двух уровнях: на уровне самой генетической системы, определяя состояние генов их работу, скорость репликации ДНК, стабильность и изменчивость генов и на уровне работы клеток в системе целостного организма.

Таким образом, генотип – это целостная генетическая система организма, а не простая совокупность всех его генов.

Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга.

Исходя из этого, может сложиться мнение, что существует довольно прочная связь между определенным геном и определенным признаком, что в большинстве случаев отдельный ген определяет фенотипическое проявление признака. Но было накоплено много фактов, показывающих, что во многих случаях числовые отношения при расщеплении в потомстве гибридов не соответствуют установленным Менделем. Например, при дигибридном скрещивании в поколении F2 вместо соотношений 9 : 3 : 3 : 1, появляются соотношения 9 : 7, 9 : 3 : 4, 12 : 3 : 1, 13 : 3 и другие.

Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа), и развитие каждого организма есть результат воздействия всего генотипа.

Что такое генотипы? Значение генотипа в научной и образовательной сферах

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и эта наука.

Что такое генотипы?

Под термином понимают совокупность генов одного организма, которые хранятся в хромосомах каждой его клетки. Понятие генотипа следует отличать от генома, т. к. оба слова несут различный лексический смысл. Так, геном представляет собой абсолютно все гены данного вида (геном человека, геном обезьяны, геном кролика).

Как формируется генотип человека?

Что такое генотип в биологии? Изначально предполагали, что набор генов каждой клетки организма отличается. Такая идея была опровергнута с того момента, как ученые раскрыли механизм образования зиготы из двух гамет: мужской и женской. Так как любой живой организм образуется из зиготы путем многочисленных делений, нетрудно догадаться, что все последующие клетки будут иметь абсолютно одинаковый набор генов.

Однако следует отличать генотип родителей от такового у ребенка. Зародыш в утробе матери имеет по половине набора генов от мамы и от папы, поэтому дети хоть и похожи на своих родителей, но в то же время не являются их 100% копиями.

Что такое генотип и фенотип? В чем их отличие?

Фенотип – это совокупность всех внешних и внутренних признаков организма. Примерами могут служить цвет волос, наличие веснушек, рост, группа крови, количество гемоглобина, синтез или отсутствие фермента. Однако фенотип не является чем-то определенным и постоянным. Если наблюдать за зайцами, то окраска их шерсти меняется в зависимости от сезона: летом они серые, а зимой белые. Важно понимать, что набор генов всегда постоянный, а фенотип может варьироваться. Если принять во внимание жизнедеятельность каждой отдельной клетки организма, любая из них несет абсолютно одинаковый генотип. Однако в одной синтезируется инсулин, в другой кератин, в третьей актин. Каждая не похожа друг на друга по форме и размерам, функциям. Это и называется фенотипическим проявлением. Вот что такое генотипы и в чем проявляются их отличия от фенотипа. -

Данный феномен объясняется тем, что при дифференцировке клеток зародыша одни гены включаются в работу, а другие находятся в “спящем режиме”. Последние либо всю жизнь остаются неактивными, либо вновь используются клеткой в стрессовых ситуациях.

Примеры записи генотипов

На практике изучение наследственной информации проводится с помощью условной шифровки генов. Например, ген карих глаз записывают большой буквой «А», а проявление голубых глаз – маленькой буквой «а». Так показывают, что признак кареглазости доминантный, а голубой цвет – это рецессив. Так, по признаку люди могут быть: доминантными гомозиготами (АА, кареглазые); гетерозиготами (Аа, кареглазые); рецессивными гомозиготами (аа, голубоглазые). По такому принципу изучают взаимодействие генов между собой, причем обычно используют сразу несколько пар генов. Отсюда возникает вопрос: что такое 3 генотип (4/5/6 и т. д.)?

Такое словосочетание означает, что берутся сразу три пары генов. Запись будет, например, такой: АаВВСс. Здесь появляются новые гены, которые отвечают за совершенно другие признаки (например, прямые волосы и кудряшки, наличие белка или его отсутствие).

Почему типичная запись генотипа условна?

Любой ген, открытый учеными, носит определенное название. Чаще всего это английские термины или словосочетания, которые в длину могут достигать немалых размеров. Орфография названий сложна для представителей зарубежной науки, поэтому ученые ввели более простую запись генов. Даже учащийся старшей школы иногда может знать, что такое генотип 3а. Такая запись означает, что за ген отвечают 3 аллели одного и того же гена. При использовании настоящего названия гена понимание принципов наследственности могло бы быть затруднено. Если речь идет о лабораториях, где проводятся серьезные исследования кариотипа и изучение ДНК, то там прибегают к официальным названиям генов. Особенно это актуально для тех ученых, которые публикуют результаты своих исследований.

Где применяются генотипы

Еще одна положительная черта использования простых обозначений – это универсальность. Тысячи генов имеют свое уникальное название, однако каждый из них можно представить одной лишь буквой латинского алфавита. В подавляющем большинстве случаев при решении генетических задач на разные признаки буквы повторяются вновь и вновь, при этом каждый раз расшифровывается значение. Например, в одной задаче ген B – это черный цвет волос, а в другой – это наличие родинки

Вопрос “что такое генотипы” поднимается не только на занятиях по биологии. На самом деле условность обозначений обусловливает нечеткость формулировок и терминов в науке. Грубо говоря, использование генотипов – это математическая модель. В реальной жизни все сложнее, несмотря на то, что общий принцип все-таки удалось перенести на бумагу. По большому счету генотипы в таком виде, в котором мы их знаем, применяются в программе школьного и вузовского обучения при решении задач. Это упрощает понимание темы “что такое генотипы” и развивает у учащихся способность к анализированию. В будущем навык использования такой записи также пригодится, однако при реальных исследованиях настоящие термины и названия генов более уместны. -

В настоящее время гены изучаются в различных биологических лабораториях. Шифрование и использование генотипов актуально для медицинских консультаций, когда один или несколько признаков прослеживаются в ряде поколений. На выходе специалисты могут прогнозировать фенотипическое проявление у детей с определенной долей вероятностью (например, появление в 25% случаев блондинов или рождение 5% детей с полидактилией

Взаимодействие генов - это одновременное действие нескольких генов. Различают две основные группы взаимодействия генов: взаимодействие между аллельными генами и между неаллельные генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые вызывают тот или иной признак.

В цитоплазме происходит взаимодействие между белками-ферментами, синтез которых определяется генами, или между веществами, которые образуются под влиянием этих ферментов. Возможны следующие типы взаимодействия генов:

для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых определяется двумя неаллельные генами;

фермент, который синтезировался с участием одного гена, полностью подавляет или инактивирует действие фермента, образованного другим неаллельные геном;

два фермента, образование которых контролируется двумя неаллельные генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака.

    Известны такие формы взаимодействия между аллельными генами: полное, неполное доминирование, кодоминирование и сверхдоминирования. Основная форма взаимодействия - полное доминирование, которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготного организма (см. Гетерозигота) проявление одного из аллелей доминирует над проявлением другого. В медицинской практике с 2 тыс. моногенных наследственных болезней (см. Наследственные болезни) почти у половины отмечают доминирование проявления патологических генов над нормальными. Неполное доминирование - такая форма взаимодействия, когда в гетерозиготного организма (Аа) доминантный ген (А) полностью не подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. При Кодоминирование в гетерозиготных организмов каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система группы крови АВ0, когда эритроциты человека несут на поверхности антигены, которые контролируются двумя аллелями. При Сверхдоминирование доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном (см. Гомозигота).

    Различают 4 основных типа взаимодействия неаллельных генов:

    комплементарность

    эпистаз

    полимерия

    модифицирующее действие (плейотропии)

      Комплементарность - такой тип взаимодействия неаллельных генов, когда один доминантный ген дополняет действие другого неаллельные доминантного гена, и они вместе определяют новый признак, которая отсутствует у родителей. Причем соответствующая признак развивается только в присутствии обоих неаллельных генов. Примером комплементарной взаимодействия генов у человека может быть синтез защитного белка интерферона.

      Его образование в организме связано с комплементарной взаимодействием двух неаллельных генов, расположенных в разных хромосомах. Эпистаз - это такое взаимодействие неаллельных генов, при которой один ген подавляет действие другого неаллельные гена. Угнетение могут вызывать как доминантные, так и рецессивные гены, в зависимости от этого различают эпистаз доминантный и рецессивный. Угнетающее ген получил название ингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена. У человека примером может быть «бомбейский фенотип». В этом случае редкий рецессивный аллель в гомозиготном состоянии подавляет активность гена, который определяет группу крови системы АВ0. Большинство количественных признаков организмов определяется несколькими неаллельные генами (полигенами). Взаимодействие таких генов в процессе формирования признака называется полимерной. В этом случае два или более доминантных аллеля одинаковой степени влияют на развитие одной и той же признаки. Так, пигментация кожи у человека определяется 5 или 6 полимерными генами.

      У коренных жителей Африки (негроидной расы) преобладают доминантные аллели, у представителей европеоидной расы - рецессивные. Поэтому мулаты имеют промежуточную пигментацию, но в браках мулатов возможно появление как более, так и менее интенсивно пигментированных детей. Многие морфологических, физиологических и патологических особенностей человека определяются полимерными генами: рост, масса тела, уровень АД и др. Развитие таких признаков у человека подчиняется общим законам полигенного наследования и зависит от условий среды. В этих случаях наблюдается, например, cклонность к гипертонической болезни, ожирения и тому подобное. Эти признаки при благоприятных условиях среды могут не проявиться или проявиться незначительно. Плейотропия - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена.

      У человека известна наследственная болезнь - арахнодактилия ( «паучьи пальцы» - очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на возникновение нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.

      Вопросы для обсуждения

      Вопросы и задания для повторения

      1.Какие из исследованных Г. Менделем признаков гороха наследуются как доминантные?

      2.Приведите примеры влияния генов на про­явление других, неаллельных генов

      3.Как взаимодействуют между собой различ­ные варианты генов входящие в серию мно­жественных аллелей?

      4.Охарактеризуйте формы взаимодействия неаллельных генов


      ГРУППА 408 БИОЛОГИЯ, 18

      ТЕМА:Образование и-РНК по матрице ДНК.



      Трудно, глядя на типографскую матрицу, судить о том, хорошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хороший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

      Ход образования и-РНК. К рибосомам, местам синтеза бел­ков, из ядра поступает несущий информацию посредник, способный пройти через поры ядерной оболочки. Таким посредником является информационная РНК (и-РНК). Это одноцепочечная молекула, комплементарная одной нити молекулы ДНК. Специальный фермент — полимераза, двигаясь по ДНК, подбирает по принципу комплементарности нуклеотиды и соединяет их в единую цепочку (рис. 21). Процесс образования и-РНК называется транскрип­цией (от лат. «транскрипцио» — переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь и-РНК аденин, если стоит гуанин — включает цитозин, если аденин — то урацил (в состав РНК не входит тимин).

      По длине каждая из молекул и-РНК в сотни раз короче ДНК. Ин­формационная РНК — копия не всей молекулы ДНК, а только части ее, одного гена или группы рядом лежащих генов, несущих ин­формацию о структуре белков, не­обходимых для выполнения од­ной функции. У прокариот такая группа генов называется опероном. В начале каждой группы генов находится своего рода посадочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, полимераза способна начать синтез и-РНК. В конце группы генов фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец переписывания. Готовая и-РНК отходит от ДНК, покидает ядро и направляется к месту синтеза белков — рибосоме, расположенной в цитоплазме клетки.

      В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:

      ДНК—и-РНК—белок.

      3. Генетический код — определенные сочетания нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК.\

      Ген — участок молекулы ДНК, несущий информацию о структуре одной молекулы белка.

      Свойства генетического кода:

      — триплетность — одна аминокислота кодируется тремя рядом расположенными нуклеотидами — триплетом, или кодоном;

      — универсальность — код един для всего живущего на Земле (у мха, сосны, амебы, человека, страуса и пр. одни и те же триплеты кодируют одни и те же аминокислоты);

      — вырожденность — одной аминокислоте может соответствовать несколько триплетов (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним трип­летом (метионин кодируется триплетом АУГ);

      — специфичность — каждый триплет кодирует только одну аминокислоту.

      Триплеты ГАА или ГАГ, занимающие шестое место в гене здоровых людей, несут информацию о цепи гемо­глобина, кодируя глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид заменен на У, а триплеты ГУА и ГУГ кодируют валин;

      — неперекрываемость — кодоны одного гена не мо­гут одновременно входить в соседний;

      — непрерывность — в пределах одного гена считывание генетической информации происходит в од­ном направлении.


       

      Комментариев нет:

      Отправить комментарий