понедельник, 8 февраля 2021 г.

 08.02.21 г. 108,305,306 по расписанию

ГРУППА 108

ТЕМА: Химия в сельском хозяйстве. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс. Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.


Химия в сельском хозяйстве и её направления

Химизация — это одно из направлений научно-техниче­ского прогресса, основанное на широком применении химиче­ских веществ, процессов и методов в различных отраслях, на­пример в сельском хозяйстве.

Основные направления химизации сельского хозяйства:

  • Производство минеральных макро- и микроудобрений, а также кормовых фосфатов.

  • Внесение извести, гипса и других веществ для улучше­ния структуры почв.

  • Применение химических средств защиты растений: гербицидов, зооцидов и инсектицидов и т. д.

  • Использование в растениеводстве стимуляторов роста и плодоношения растений.

  • Разработка способов выращивания экологически чис­той сельскохозяйственной продукции.

  • Повышение продуктивности животных с помощью сти­муляторов роста, специальных кормовых добавок.

  • Производство и применение полимерных материалов для сельского хозяйства.

  • Производство материалов для средств малой механиза­ции, использующихся в сельском хозяйстве.

Основная цель химизации сельского хозяйства — обеспе­чение роста производства, улучшение качества и продление сроков сохранности сельскохозяйственной продукции, повы­шение эффективности земледелия и животноводства.

Удобрения и их классификация

Эффективность удобрений значительно возрастает, если их применяют в комплексе с другими приемами агротехники. Сейчас в мире более 90% удобрений не возвращается в почву, откуда они взяты с урожаем, а безвозвратно теряется в сточ­ных трубах городов и населенных пунктов. Чудовищная концентрация населения в городах привела к из­влечению из почвы всех минеральных удобре­ний, вследствие чего почва производит про­дукты питания низкого биологического каче­ства, которые снижают энергию и жизнедеятельность народа. Однако чрезмерное и неправильное использование удобре­ний в сельском хозяйстве дает также значительный отрица­тельный эффект. Использование удобрений и пести­цидов в сельском хозяйстве приводит к избы­точному содержанию нитритов и нитратов в сельскохозяйствен­ной продукции, загрязнению водоемов, морей и океа­нов вымываемых удобрениями.

По происхожде­нию удобрения разделяют на:

  • неорганические (минеральные)

  • орга­нические

  • органо-минеральные

  • бактериальные.

Минеральные удобрения — неорганические вещества (в ос­новном соли), содержащие необходимые для растений элемен­ты питания. Их получают химической или механической об­работкой неорганического сырья и другими способами.

По составу бывают:

  • Азотные

  • Фосфорные

  • Калийные

  • Микроудобрения (борные, молибденовые и т. д.)

Органические удобрения. Питательные элементы в них находятся в веществах растительного и животного происхож­дения. Это навоз, торф, жмых, фекалии, пищевые отходы и отбросы, лю­пин, сераделла.

Органо-минеральные удобрения содержат органические и минеральные вещества. Их получают путем обработки амми­аком и фосфорной кислотой органических веществ (торфа, сланцев, бурого угля) или путем смешивания навоза либо тор­фа с фосфорными удобрениями.

Бактериальные удобрения — препараты, содержащие культуру микроорганизмов, фиксирующих органическое ве­щество почвы и удобрений (азотобактерин, нитрагин почвен­ный).

По агрегатному состоянию они могут быть:

  • Твердыми

  • Жидкими

  • Сус­пензированными

По агрохимическому воздействию они могут быть:

  • Прямые

  • Косвенные

  • Препараты, регули­рующие рост растений

IПрямые удобрения предназначаются для непосредст­венного питания растений. Они содержат азот, фосфор, ка­лий, магний, серу, железо и микроэлементы (В, Mo, Cu, Zn) и делятся на:

aПростыекоторые содержат один из элементов питания: азот, фосфор, калий, молибден и т. д. В свою очередь, их под­разделяют на:

1) азотные удобрениякоторые различают по форме со­единений азота:

  • Аммиачные

  • Аммонийные

  • Нитратные

  • Амидные

  • Их сочетания

2) фосфорные удобренияв основу классификации кото­рых положена их растворимость в воде и органических кисло­тах, они делятся на:

  • растворимые в воде (гидрофосфат аммо­ния)

  • нераст­воримые в воде, но растворимые в растворах лимонной кисло­ты и ее солей (преципитат)

  • труднорастворимые в воде (фосфоритная мука, простой суперфосфат)

3) калийные удобрения разделают на:

  • сырые соли (мине­ралы каинит, сильвинит)

  • концентрированные удобрения, по­лученные переработкой природных калийных солей (КС1, K2SO4), золы (древесные и торфяные), содержащие поташ — К2СО3

4) микроудобрения — технические смеси, содержащие микроэлементы В(ОН)3 (Н3ВО3, молибдат аммония и др.).

bКомплексные удобрения: содержат не менее двух пита­тельных элементов.

IIКосвенные удобрения применяют для химического, физического, микробиологического воздействия на почву с целью улучшения условий использования удобрений. Напри­мер, для нейтрализации кислотности почв применяют моло­тые известняки, доломит, гашеную известь; для мелиорации солонцов используют гипс; для подкисления почв используют гидросульфит натрия.

Химическая мелиорация почв

Химическую мелиорацию проводят для улучшения качества почв с повышенной кислотностью или щелочностью. В первом случае осуществляют известкование, во втором — гипсование.

Химические средства защиты растений

Ежегодно из-за вредителей, сорняков и болезней в мире теряется до 24% урожая. Суммарный ущерб сельскому хозяй­ству ежегодно исчисляется в 70 млрд долларов.

Для борьбы с вредителями, сорняками и болезнями в на­шей стране ежегодно выпускают более 500 тыс. т пестицидов. Их применение позволяет сберечь до сотни тысяч тонн урожая в год.

По назначению пестициды делят на:

  • инсектициды (для борьбы с вредными насекомыми)

  • фунгициды ( для излече­ния растений и почвы от грибковых заболеваний)

  • гербициды (для уничтожения сорняков)

  • бактерициды (для уничтожения вред­ных микроорганизмов)

  • зооциды (для уничтожения грызунов)

  • половые аттрактанты (для приманки вредителей и их уничтожения)

  • репелленты (для отпу­гивания вредных насекомых от растений, которыми они питаются)

  • хемостерилянты (для стерилизации вредных насекомых)

Широкое применение пестицидов не только ведет к росту урожайности, но и к таким отрицательным последствиям, как:

  • гибель диких животных при обработке полей пестици­дами

  • массовое размножение вредителей после применения пестицидов

  • появление вредителей, устойчивых к пестицидам

Уменьшить вредное влияние пестицидов на природу можно, пользуясь следующими методами борьбы с грызунами:

  • Карантинный метод (предепреждение распространения вредителей)

  • Селекционный метод (выведении сортов расте­ний и пород животных, устойчивых к болезням и вредным на­секомым)

  • Агротехнический метод (обработки почвы, введение севооборотов и т.д.)

  • Химический метод (созданию новых пестицидов с высокой избирательностью действия и большой скоростью распада)

  • Физический способ (ультразвук, ультрафиолет, электропропольник и т.д.)


ГРУППА 305

ТЕМА: Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы.

Электролитическая диссоциация

Понятие электролитов впервые ввел М. Фарадей в первой половине XIX века. Согласно его определению:

Определение

Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.

Опустим в стакан с водой графитовые стержни, присоединенные к источнику тока и связанные цепью с электрической лампой. При включении рубильника никаких видимых изменений не происходит. Это означает, что вода не проводит электрический ток, то есть не является электролитом. Внесем в стакан с водой поваренную соль – хлорид натрия, . Лампа ярко вспыхивает.Наличие проводимости свидетельствует о появлении в растворе заряженных частиц. Направленное движение частиц наблюдается также в расплавах солей (например, электролиз расплава хлорида натрия позволяет получать металлический натрий, выделяющийся на катоде и газообразный хлор на аноде).

Определение

Атомы и группы атомов, несущие электрический заряд, называют ионами. Положительно заряженные ионы называют катионами, отрицательно заряженные ионы - анионами. 

Проведя дополнительный опыт, можно убедиться, что сухая поваренная соль  не проводит электрический ток. Таким образом, можно сделать вывод, что свободные ионы появляются в расплаве и при растворении соли в воде.

Рассмотрим на атомарном уровне, что происходит с кристаллом поваренной соли при попадании его в воду. Соль – вещество с ионной кристаллической решеткой, в узлах которой расположены катионы натрия и анионы хлора. Они удерживаются друг около друга благодаря силам электростатического притяжения.

Молекула воды представляет собой диполь, так как на атомах водорода локализованы частичные положительные заряды, на на атоме кислорода – отрицательный.

В молекуле воды атомные орбитали кислорода находятся в -гибридизации (то есть имеет форму тетраэдра), причем две недостающие орбитали из четырех  образованы двумя парами электронов (электронная конфигурация внешнего уровня кислорода ). Поэтому между связями в молекуле воды угол составляет примерно 104 градуса, то есть молекула имеет не линейную, а угловую форму. Благодаря этому молекула воды является диполем, и  ее дипольный момент не равен нулю.

Для объяснения свойств водных растворов электролитов С. Аррениус в 1887 году предложил теорию электролитической диссоциации. Эта теория объясняла, почему растворы некоторых веществ проводят электрический ток, но не отвечала на вопрос, почему одни вещества являются электролитами, а другие - нет. Более подробно особенности поведения веществ в растворах описал Д.И. Менделеев, который экспериментально доказал, что при растворении электролитов происходит химическое взаимодействие между молекулами растворенного вещества и молекулами растворителя. Сущность процесса электролитической диссоциации было объяснено на основании природы химической ионной связи.

Согласно теории Д.И. Менделеева, электролитическая диссоциация молекул электролитов протекает в три стадии. Рассмотрим эти стадии на примере поваренной соли NaCl.

1. При попадании в воду, молекулы воды окружают кристаллы поваренной соли, притягиваясь к катионам натрия своими отрицательно заряженными концами, а к анионам хлора - положительно заряженными. Эта стадия называется ассоциация.

2. За счет электростатического взаимодействия, молекулы  воды "растаскивают" молекулу электролита, связь между ионами в кристалле ослабевает и разрывается, то есть происходит непосредственно диссоциация (распад) молекул.

3. Диполи воды полностью окружают образовавшиеся при распаде ионы, катионы и анионы, образуя гидратную оболочку. Гидратированные ионы переходят в раствор. 

В неводных растворах  в качестве диполей может выступать не вода, а другой полярный растворитель, например, этанол. В таком случае ионы окружены молекулами растворителя (образуют сольватную оболочку) и называются сольватированными.

Определение

Ионы в водном растворе окружены молекулами воды, то есть имеют гидратную оболочку, и называются гидратированными.

Таким образом, описанный выше процесс можно описать уравнением:

где  - гидратированные ионы,т.е. ионы, окруженные молекулами воды.

В большинстве случаев этот процесс записывают упрощенно, не указывая гидратированное состояние ионов:

Определение

Процесс распада вещества на ионы при растворении в воде или расплавлении называют электролитической диссоциацией.

Электролитическая диссоциация состоит из двух одновременно протекающих обратных процессов: из диссоциации (распад молекул на ионы) и ассоциации (процесс образования молекул из ионов). Поэтому в уравнении электролитической диссоциации всегда ставят знак 

В водных растворах диссоциации подвержены кислоты, сильные основания и растворимые соли: 

 

 

При диссоциации происходит резкое увеличение числа частиц в растворе – это отличает растворы электролитов от растворов неэлектролитов. Именно поэтому растворы солей замерзают при более низкой температуре, чем растворы неэлектролитов. 

Особенно сильно гидратирован ион водорода . Он находится в водных растворах в виде иона гидроксония  или более сложных ионов.

Основные положения Теории электролитической диссоциации 

Согласно теории электролитической диссоциации С. Аррениуса и Д. И. Менделеева можно сформулировать основные положения теории электролитической диссоциации (ТЭД):

  • При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).
  • Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией).
Определение

Степень электролитической диссоциации  показывает отношение числа молекул, распавшихся на ионы общ к общему числу молекул, введенных в раствордисс и зависит от природы электролита и растворителя, температуры и концентрации:

диссобщ

Основываясь на теории электролитической диссоциации можно дать определения важнейшим классам неорганических соединений

НазваниеОпределениеУравнение диссоциации
ОксидыНеэлектролиты, состоят из атомов элемента и кислородаНе диссоциируют в водных растворах
 КислотыЭлектролиты, при диссоциации образуют катионы водорода

 

 ОснованияЭлектролиты, при диссоциации образуют гидроксид-анионы.Растворимые в воде основания называют щелочами

 

 СолиЭлектролиты, при диссоциации образуют катионы металла и анионы кислотного остатка

 

ГРУППА 306

ТЕМА: Ковалентная химическая связь. Механизм образования ковалентной связи (обменный и донорно-акцепторный). Электроотрицательность. Ковалентные полярная и неполярная связи.Кратность ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

ТИПЫ химической связи

 Различают 4 основных типа химической связи:

Рассмотрим взаимодействие двух атомов с одинаковыми значениями  электроотрицательности, например двух атомов хлора. Каждый из них имеет по семь валентных электронов. До электронной конфигурации ближайшего инертного газа  им не хватает по одному электрону.

Сближение двух атомов до определенного расстояния приводит к образованию общей электронной пары, одновременно принадлежащей обоим атомам. Эта общая пара и представляет собой химическую связь. Аналогично происходит и в случае молекулы водорода. У водорода всего один неспаренный электрон, и до конфигурации ближайшего инертного газа (гелия) ему не хватает еще одного электрона. Таким образом, два атома водорода при сближении образуют одну общую электронную пару.

 

Определение

Связь между атомами неметаллов, возникающая при взаимодействии электронов с образованием общих электронных пар, называется ковалентной.

В случае если взаимодействующие атомы имеют равные значения электроотрицательности, общая электронная пара в равной степени принадлежит обоим атомам, то есть находится на равном расстоянии от обоих атомов. Такая ковалентная связь называется неполярной.

Определение

Ковалентная неполярная связь — химическая связь между атомами неметаллов с равными или близкими значениями электроотрицательности. При этом общая электронная пара одинаково принадлежит обоим атомам, смещения электронной плотности не наблюдается.

Ковалентная неполярная связь имеет место в простых веществах-неметаллах: О. При взаимодействии атомов, имеющих различные значения электроотрицательности, например водорода и хлора, общая электронная пара оказывается смещенной в сторону атома с большей электроотрицательностью, то есть в сторону хлора. Атом хлора приобретает частичный отрицательный заряд, а атом водорода — частичный положительный. Это пример ковалентной полярной  связи.

Определение

Связь, образованная элементами-неметаллами с разной электроотрицательностью, называется ковалентной полярной. При этом происходит смещение электронной плотности в сторону более электроотрицательного элемента.

Молекула, в которой разделены центры положительного и отрицательного зарядов, называется диполем. Полярная связь имеет место между атомами с различной, но не сильно различающейся электроотрицательностью, например между различными неметаллами. Примерами соединений с полярными ковалентными связями являются соединения неметаллов друг с другом, а также различные ионы, содержащие атомы неметаллов . Особенно много ковалентных полярных соединений среди органических веществ. 






Атомная решетка

В узлах решетки — атомы, связанные ковалентными связями. Химическая связь — ковалентная полярная или неполярная. Атомная кристаллическая решетка характерна для углерода (алмаз, графит — рисунок), бора, кремния, германия, оксида кремния SiO (кремнезем, кварц, речной песок), карбида кремния SiC (карборунд), нитрида бора BN. Свойства: высокая твердость, высокие температуры плавления, нерастворимость, нелетучесть, отсутствие запаха.

Свойства веществ с атомной кристаллической решеткой:

  • высокая твердость;
  • высокие температуры плавления;
  • нерастворимость;
  • нелетучесть;
  • отсутствие запаха.
  • Молекулярные решетки

    В узлах — молекулы веществ, которые удерживаются в узлах решетки с помощью слабых межмолекулярных сил.

    Молекулярное строение имеют:

    • все органические вещества (кроме солей);
    • вещества — газы и жидкости;
    • легкоплавкие и летучие твердые вещества, в молекулах которых ковалентные связи (полярные и неполярные).

    Подобные вещества часто имеют запах.

Комментариев нет:

Отправить комментарий