ГРУППА 408 ХИМИЯ 57,58,59,60
ТЕМА:57 Развитие представлений о
возникновении жизни. Вопрос о происхождении жизни является одним из наиболее сложных вопросов естествознания. Точного ответа на него нет, но существует множество гипотез. 1. Гипотеза божественного происхождения жизни (креационизм) Согласно этой гипотезе все живые организмы на Земле были созданы Богом. Они изначально целесообразны и сохраняются в неизменном виде. Причём сотворение мира произошло единожды, поэтому его изучение невозможно. Креационизм принимает жизнь как данность и не предпринимает попыток объяснения происхождения жизни естественными законами природы. 2. Гипотеза самопроизвольного зарождения жизни Эта гипотеза подразумевает многократное самопроизвольное возникновение живых организмов из неживой материи. В Средние века многим «удавалось» наблюдать появление живых организмов (червей, личинок насекомых, мышей, плесневых грибов) в гниющих остатках организмов. В Окончательно опровергнуть гипотезу спонтанного возникновения живых организмов удалось в К концу 3. Гипотеза панспермии В 4. Биохимическая гипотеза УППА 305В В В основе современных научных представлений о происхождении жизни лежит гипотеза биохимической эволюции Опарина — Холдейна. Александр Опарин Джон Холдейн Согласно теории биохимической эволюции формирование жизни на Земле шло в три этапа:
Абиогенный синтез органических веществ Согласно теории Опарина возникновение жизни на Земле возможно было только в условиях древней атмосферы и отсутствия живых организмов. На первых этапах своего существования наша Земля представляла собой раскалённый шар. По мере её остывания постепенно формировалась первичная атмосфера, состоящая из аммиака, метана, углекислого газа, цианистого водорода и паров воды. Ни кислорода, ни озона в атмосфере древней Земли не было. При дальнейшем понижении температуры образовался первичный океан. Под действием различных видов энергии (электрические разряды, ядерные реакции, солнечная радиация, извержения вулканов) образовались простые органические соединения: формальдегид, спирты, муравьиная кислота, аминокислоты и т. д. Окисление образовавшихся веществ не происходило, так как отсутствовал свободный кислород. Синтезированные вещества в течение десятков миллионов лет постепенно накапливались в древнем океане. Их накопление в итоге привело к образованию однородной массы — «первичного бульона». По мнению Опарина, именно в «первичном бульоне» и возникла жизнь. Этот этап биохимической эволюции был подтверждён экспериментально биохимиками С. Миллером, Дж. Оро и другими учёными. В экспериментальных установках, моделирующих условия первобытной Земли, ими были получены альдегиды, аминокислоты, простые сахара, пуриновые и пиримидиновые основания, нуклеотиды. Образование биополимеров Из простых органических веществ при определённых условиях синтезировались биополимеры. Аминокислоты соединялись в полипептиды, простые сахара превращались в полисахариды, а нуклеотиды — в нуклеиновые кислоты. Карбоновые кислоты, соединяясь со спиртами, могли образовать липиды, которые покрывали поверхность водоёмов жирной плёнкой. Возникшие белки формировали коллоидные комплексы, притягивающие к себе молекулы воды. Так появились коацерваты — сгустки органических веществ, обособленные от остальной массы воды. В коацерваты постоянно поступали органические соединения, в результате чего происходил синтез более сложных веществ. Они могли сливаться и увеличиваться в размерах. Слияние коацерватных капель Образование биополимеров и коацерватов в условиях древней Земли подтверждено экспериментально работами Л. Орджела и С. Акабори. Ими были получены простейшие белки и нуклеотидные цепи. Формирование мембранных структур и появление самовоспроизведения Из липидных плёнок на поверхности коацерватов могла сформироваться биологическая мембрана. Объединение коацерватов с нуклеиновыми кислотами привело к образованию примитивных самовоспроизводящихся живых организмов — пробионтов. Эти первичные организмы были анаэробами и гетеротрофами и питались веществами «первичного бульона». Таким образом, около ТЕМА:58 Развитие жизни в Криптозое. Развитие жизни на ЗемлеИсторию живых организмов на Земле изучают по сохранившимся в осадочных горных породах остаткам, отпечаткам и другим следам их жизнедеятельности. Этим занимается наука палеонтология. Для удобства изучения и описания вся история Земли разделена на отрезки времени, имеющие различную длительность и отличающиеся друг от друга климатом, интенсивностью геологических процессов, появлением одних и исчезновением других групп организмов и т. д. В геологической летописи эти отрезки времени соответствуют разным слоям осадочных пород с включенными в них ископаемыми остатками. Чем глубже расположен слой осадочных пород (если, конечно, слои не перевернуты в результате тектонической деятельности), тем древнее находящиеся там ископаемые. Такое определение возраста находок является относительным. Кроме того, нужно помнить, что зарождение той или другой группы организмов происходит раньше, чем она появляется в геологической летописи. Группа должна стать достаточно многочисленной, чтобы через сотни миллионов лет мы могли обнаружить ее представителей при раскопках. Рис. 71. История развития жизни на Земле и формирование современной атмосферы Названия этих отрезков времени греческого происхождения. Самые крупные такие подразделения — зоны, их два — криптозой (скрытая жизнь) и фанерозой (явная жизнь). Зоны делятся на эры (рис. 71). В криптозое две эры — архей (древнейший) и протерозой (первичная жизнь). Фанерозой включает в себя три эры — палеозой (древняя жизнь), мезозой (средняя жизнь) и кайнозой (новая жизнь). В свою очередь, эры разделены на периоды, периоды иногда делят на более мелкие части. Для того чтобы выяснить, какие реальные промежутки времени соответствуют эрам и периодам, определяют содержание изотопов различных химических элементов в горных породах и остатках организмов. Поскольку скорость распада изотопов строго постоянная и хорошо известная величина, можно определить абсолютный возраст найденных ископаемых. Чем дальше от нас отстоит тот или другой период времени, тем с меньшей точностью определяется его возраст. Развитие жизни в криптозоеПо мнению ученых, планета Земля формировалась 4,5—7 млрд лет назад. Около 4 млрд лет назад стала остывать и затвердела земная кора, на Земле возникли условия, позволившие развиваться живым организмам. Эти первые организмы были одноклеточными, не имели твердых оболочек, поэтому обнаружить следы их жизнедеятельности очень трудно. Неудивительно, что ученые долгое время считали, что Земля значительную часть времени своего существования была безжизненной пустыней. Хотя на криптозой приходится около 7/8 всей истории Земли, интенсивное изучение этого зона началось только в середине XX в. Применение современных методов исследования, таких, как электронная микроскопия, компьютерная томография, методов молекулярной биологии позволило установить, что жизнь на Земле намного древнее, чем представлялось ранее. В настоящее время науке неизвестны такие осадочные породы, в которых бы не было следов жизнедеятельности. В самых древних известных на Земле осадочных породах, возраст которых 3,8 млрд лет, обнаружены вещества, входившие, по-видимому, в состав живых организмов. Архей. Архей — самая древняя эра, начался более 3,5 млрд лет назад и продолжался около 1 млрд лет. В это время на Земле были уже довольно многочисленны цианобактерии, окаменевшие продукты жизнедеятельности которых — строматолиты — найдены в значительных количествах. Австралийскими и американскими исследователями были найдены и сами окаменевшие цианобактерии. Таким образом, в архее уже существовала своеобразная «прокариотическая биосфера». Цианобактериям обычно для жизнедеятельности нужен кислород. Кислорода в атмосфере еще не было, однако им, по-видимому, хватало кислорода, который выделялся при химических реакциях, протекавших в земной коре. Очевидно, биосфера, состоящая из анаэробных прокариот, существовала еще раньше. Важнейшим событием архея явилось возникновение фотосинтеза. Нам неизвестно, какие именно организмы явились первыми фотосинтетиками. Самым ранним свидетельством существования фотосинтеза являются содержащие углерод минералы с таким соотношением изотопов, которое характерно именно для углерода, прошедшего через процесс фотосинтеза. Эти минералы имеют возраст более 3 млрд лет. Возникновение фотосинтеза имело огромное значение для дальнейшего развития жизни на Земле. Биосфера получила неиссякаемый источник энергии, а в атмосфере начал накапливаться кислород (см. рис. 71). Содержание кислорода в атмосфере еще долго оставалось низким, однако появились предпосылки бурного развития аэробных организмов в дальнейшем. Протерозой. Протерозойская эра — самая длинная в истории Земли. Она продолжалась около 2 млрд лет. Примерно через 600 млн лет после начала протерозоя, около 2 млрд лет назад, содержание кислорода достигло так называемой «точки Пастера» — около 1% от его содержания в атмосфере, современной нам. Ученые считают, что такая концентрация кислорода достаточна для того, чтобы обеспечить устойчивую жизнедеятельность одноклеточных аэробных организмов. Медленное, но постоянное увеличение содержания кислорода в атмосфере способствовало совершенствованию клеточного дыхания, возникновению окислительного фосфорилирования. Окислительное фосфорилирование, будучи значительно более эффективным способом утилизации энергии углеводов, чем анаэробный гликолиз, в свою очередь, вело к процветанию аэробных организмов. Накопление кислорода в атмосфере привело к формированию озонового экрана в стратосфере, что сделало принципиально возможной жизнь на суше, защитив ее от смертоносного жесткого ультрафиолета. Прокариоты — бактерии и одноклеточные водоросли — жили, по-видимому, и на суше, в пленках воды между минеральными частицами в зонах частичного затопления вблизи водоемов. Результатом их жизнедеятельности стало образование почвы. Рис. 72. Флора и фауна позднего протерозоя. Не менее важным событием было и возникновение эукариот. Когда оно произошло, неизвестно, так как зафиксировать его очень трудно. Исследования на молекулярном уровне дали основание некоторым ученым предположить, что эукариоты могут быть столь же древними, как и прокариоты. В геологической же летописи признаки деятельности эукариот появились примерно 1,8—2 млрд лет назад. Первые эукариоты были одноклеточными организмами. По-видимо-му, уже у них сформировались такие фундаментальные признаки эукариот, как митоз и наличие мембранных органелл. Ко времени 1,5—2 млрд лет назад относят возникновение одного из самых важных ароморфозов — полового размножения. Важнейшим этапом в развитии жизни явилось возникновение многоклеточности. Это событие дало мощный толчок увеличению разнообразия живых организмов, их эволюции. Многоклеточность делает возможными специализацию клеток в пределах одного организма, возникновение тканей и органов, в том числе органов чувств, активное добывание пищи, передвижение. Эти преимущества способствовали широкому расселению организмов, освоению всех возможных экологических ниш и в конечном итоге формированию современной биосферы, пришедшей на смену «прокариотической». Первые многоклеточные организмы появились в протерозое не менее 1,5 млрд лет назад. Однако некоторые ученые считают, что это произошло гораздо раньше — около 2 млрд лет назад. Это были, по-видимому, водоросли. Вспышка разнообразия животных. Конец протерозоя, примерно 680 млн лет назад, ознаменовался мощной вспышкой разнообразия многоклеточных организмов и появлением животных (рис. 72). До этого периода находки многоклеточных редки и представлены растениями и, возможно, грибами. Возникшая в конце протерозоя фауна получила название эдиакарской по местности в Южной Австралии, где в середине XX в. в слоях возрастом 650—700 млн лет были обнаружены первые отпечатки животных. Впоследствии похожие находки были сделаны и на других материках. Эти находки послужили причиной выделения в протерозое особого периода, получившего название венд (по названию одного из славянских племен, живших на берегу Белого моря, где обнаружено множество ископаемых остатков представителей этой фауны). Венд продолжался примерно 110 млн лет. За это короткое по сравнению с предыдущими эпохами время возникло и достигло значительного разнообразия большое количество видов многоклеточных животных, относящихся к типам кишечнополостных, червей, членистоногих. Некоторые из этих животных имели до 1 м в длину, по-видимому, они были студенистыми, как медузы. Отличительная особенность животных вендо-эдиакарской фауны — отсутствие какого бы то ни было скелета. Вероятно, тогда еще не было хищников, от которых надо было защищаться. С чем же связана такая вспышка разнообразия? Ученые предполагают, что в конце протерозоя наша планета претерпевала значительные потрясения. Была очень высокой гидротермальная активность, шло горообразование, оледенения сменялись потеплением климата. В атмосфере увеличилось содержание кислорода. Повышение содержания кислорода до 5—6% от современного уровня, по-видимому, было необходимым для успешного существования многоклеточных животных довольно крупных размеров. Эти изменения в среде обитания, очевидно, и привели к появлению новых типов и их бурному развитию. Кончался криптозой, эон «скрытой жизни», охватывающий более 85% всего времени существования жизни на Земле, начинался новый этап — фанерозой.
ТЕМА:59 Развитие жизни в Палеозое. ТЕМА:60 Развитие жизни в Мезозое. Палеозойская эра началась около 540 миллионов лет назад и закончилась примерно 250 миллионов лет назад. Она продолжалась 290 миллионов лет. Первый период Палеозойской эры - кембрийский, начался с массового распространения живых организмов с минеральным скелетом. Долгое время считалось, что тогда же возникли и многоклеточные организмы, но изучение вендской (эдиакарской) фауны показало, что мягкотелые многоклеточные, лишенные минерального скелета, возникли значительно раньше. Сейчас палеонтологи полагают, что отдельные виды, обладавшие различными скелетными элементами, могли появится и до начала Палеозоя, но они не были массовыми. ТЕМА: РАЗВИТИЕ ЖИЗНИ В МЕЗОЗОЕ. Мезозойская эра (эра средней жизни) началась Подразделяется на три периода: триасовый, меловой и юрский. В начале мезозоя происходит расцвет голосеменных растений. В отличие от папоротников, хвощей и плаунов размножение голосеменных не зависит от воды. Во второй половине мезозойской эры появились покрытосеменные. Важным ароморфозом у них было формирование плода, который защищает семя и привлекает животных. Второй ароморфоз покрытосеменных — появление цветка, который позволил осуществлять половое размножение с помощью насекомых. Эти ароморфозы обусловили бурное развитие цветковых растений. Увеличение видового разнообразия цветковых растений способствовало росту видового разнообразия насекомых. В морях распространены хрящевые и костные рыбы. Начинается расцвет головоногих моллюсков. Но наибольшего расцвета достигают рептилии. Некоторые из водных рептилий достигали гигантских размеров — имели несколько метров в длину и весили десятки тонн. На суше тоже господствуют рептилии. Они занимают все природные среды. Травоядные рептилии имели разные размеры (более Расцвет рептилий был возможен благодаря тёплому климату мезозойской эры. К концу мезозойской эры климат на Земле становится более холодным и сухим. Рептилии не способны поддерживать постоянной температуру тела. Им на смену пришли теплокровные птицы и млекопитающие.
|
Комментариев нет:
Отправить комментарий