пятница, 10 февраля 2023 г.

10.02.23 г. Пятница, 401,505,501

  РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 06.01.23г.-10.01.23г.

Пн.06,02: 306, 401, 401, 408 

Вт. 07,02: 508, 505, 505, 501

Ср. 08.02: 406, 505, 401, ---- 

 Чт. 09.02: 505, 501, 306, 508

 Пт. 10.02: 401, 505,  ----, 501  

Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com  . Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы

моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА 401 ХИМИЯ 35,36

ТЕМА 35:Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах. Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.

Спиртами называют соединения, содержащие одну или несколько гидроксильных групп, непосредственно связанных с углеводородным радикалом.

 Классификация спиртов

Спирты классифицируют по различным структурным признакам.

1.     По числу гидроксильных групп спирты подразделяются на

o    одноатомные (одна группа -ОН)

Например, СH3 – OH метанол, CH3 – CH2 – OH этанол

o    многоатомные (две и более групп -ОН).

Современное название многоатомных спиртов - полиолы (диолы, триолы и т.д). Примеры:

двухатомный спирт – этиленгликоль (этандиол)

HO–СH2–CH2–OH

трехатомный спирт – глицерин (пропантриол-1,2,3)

 HO–СH2–СН(ОН)–CH2–OH

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH)2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH)3 не существуют.

 В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты

o    первичные   R–CH2–OH,

o    вторичные   R2CH–OH,

o    третичные    R3C–OH.

Например:


 Типы атомов углерода

В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH2–) и одну вторичноспиртовую (–СН(ОН)–) группы.

     По строению радикалов, связанных с атомом кислорода, спирты подразделяются на

o    предельные (например, СH– CH2–OH)

o    непредельные (CH2=CH–CH2–OH)

o    ароматические (C6H5CH2–OH)

Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны. 

Например,  виниловый   спирт   CH2=CH–OH   превращается   в  уксусный альдегид CH3–CH=O

Предельные одноатомные спирты

1. Определение

ПРЕДЕЛЬНЫЕ ОДНОАТОМНЫЕ СПИРТЫ – кислородсодержащие органические вещества, производные предельных углеводородов, в которых один атом водорода замещён на функциональную группу (-OH)

 

Общая формула:        

CnH2n+1OH   или    ROH    или     CnH2n+2O

2. Гомологический ряд


Простейшие спирты

Название

Формула

Модели

Метиловый спирт
(метанол)

CH3-OH

Этиловый спирт
(этанол)

CH3CH2-OH

3. Номенклатура спиртов

Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы (если это необходимо). Например:


Нумерация ведется от ближайшего к ОН-группе конца цепи.

Цифра, отражающая местоположение ОН-группы, в русском языке обычно ставится после суффикса "ол".


По другому способу (радикально-функциональная номенклатура) названия спиртов производят от названий радикалов с добавлением слова "спирт". В соответствии с этим способом приведенные выше соединения называют: метиловый спирт, этиловый спирт, н-пропиловый спирт СН3-СН2-СН2-ОН, изопропиловый спирт СН3-СН(ОН)-СН3.

4. Изомерия спиртов

Для спиртов характерна структурная изомерия:

·  изомерия положения ОН-группы (начиная с С3);
Например:

·  углеродного скелета (начиная с С4);
Например, изомеры углеродного скелета для C4H9OH:

·  межклассовая изомерия с простыми эфирами
Например,

этиловый спирт СН3CH2–OH и диметиловый эфир CH3–O–CH3

Возможна также пространственная изомерия – оптическая.

Например, бутанол-2 СH3CH(OH)СH2CH3, в молекуле которого второй атом углерода (выделен цветом) связан с четырьмя различными заместителями, существует в форме двух оптических изомеров.

5. Строение спиртов

Строение самого простого спирта — метилового (метанола) — можно представить формулами:


Из электронной формулы видно, что кислород в молекуле спирта имеет две неподеленные электронные пары.

Свойства спиртов и фенолов определяются строением гидроксильной группы, характером ее химических связей, строением углеводородных радикалов и их взаимным влиянием.

Связи О–Н и С–О – полярные ковалентные. Это следует из различий в электроотрицательности кислорода (3,5), водорода (2,1) и углерода (2,4). Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атому кислорода в спиртах свойственна sp3-гибридизация. В образовании его связей с атомами C и H участвуют две 2sp3-атомные орбитали, валентный угол C–О–H близок к тетраэдрическому (около 108°). Каждая из двух других 2 sp3-орбиталей кислорода занята неподеленной парой электронов.

Подвижность атома водорода в гидроксильной группе спирта несколько меньше, чем в воде. Более "кислым" в ряду одноатомных предельных спиртов будет метиловый (метанол). 
Радикалы в молекуле спирта также играют определенную роль в проявлении кислотных свойств. Обычно углеводородные радикалы понижают кислотное свойства. Но если в них содержатся, электроноакцепторные группы, то кислотность спиртов заметно увеличивается. Например, спирт (СF3)3С—ОН за счет атомов фтора становится настолько кислым, что способен вытеснять угольную кислоту из ее солей.

6. Физические свойства 

МЕТАНОЛ (древесный спирт) – жидкость (tкип=64,5; tпл=-98; ρ = 0,793г/см3), с запахом алкоголя,  хорошо растворяется в воде. Ядовит – вызывает слепоту, смерть наступает от паралича верхних дыхательных путей.

ЭТАНОЛ (винный спирт) – б/цв жидкость, с запахом спирта, хорошо смешивается с водой.

Первые представители гомологического ряда спиртов — жидкости, высшие — твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает. Высшие спирты практически нерастворимы в воде.

Видео-опыт: Физические свойства спиртов

Особенности строения спиртов – спирты образуют водородные связи (обозначают точками) за счёт функциональной группы (-ОН)


Вывод:

1) В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С,

а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

2) Способность спиртов образовывать межмолекулярные водородные связи не только влияет на их температуры кипения, но и увеличивает их растворимость в воде. Все алканы нерастворимы в воде, а низкомолекулярные спирты (метиловый, этиловый, н-пропиловый и изопропиловый) растворяются в воде неограниченно. 

3) Отсутствие газов в гомологическом ряду предельных одноатомных спиртов.

Применение этанола : Химическая промышленность : Широко применяется как растворитель ; В бытовой химии этанол применяется в чистящих и моющих средствах, в особенности для ухода за стеклом и сантехникой. Является растворителем для репеллентов. Служит сырьём для получения многих химических веществ, таких, как ацетальдегид, диэтиловый эфир, тетраэтилсвинец, уксусная кислота, хлороформ, этилацетат, этилен и др.


5 Медицина: как обеззараживающее и подсушивающее средство, наружно; дубящие свойства 96 % этилового спирта используются для обработки операционного поля или в некоторых методиках обработки рук хирурга; растворитель для лекарственных средств, для приготовления настоек, экстрактов из растительного сырья и др.; пеногаситель при подаче кислорода, искусственной вентиляции легких; в согревающих компрессах; для физического охлаждения при лихорадке (для растирания); антидот при отравлении этиленгликолем и метиловым спиртом.


6 Парфюмерия и косметика: Является универсальным растворителем различных веществ и основным компонентом духов, одеколонов, аэрозолей и т. п. Входит в состав разнообразных средств, включая даже такие как зубные пасты, шампуни, средства для душа, и т. д. Пищевая промышленность: Наряду с водой, этанол является необходимым компонентом спиртных напитков. Также в небольших количествах содержится в ряде напитков, получаемых брожением, но не причисляемых к алкогольным (кефир, квас, кумыс, безалкогольное пиво и др.). Содержание этанола в свежем кефире 0,12 %, но в долго стоявшем, особенно в тёплом месте, может достичь 1 %. В кумысе содержится 13 % этанола, в квасе от 0,

7 Применение этанола в качестве автомобильного топлива: Этанол может использоваться как топливо, в т. ч. для ракетных двигателей, двигателей внутреннего сгорания в чистом виде.


8 Сила действия этанола зависит от дозы. Этанол относится к наркозным средствам жирного ряда. В результате действия на кору головного мозга вызывает опьянение с характерным алкогольным возбуждением. В больших дозах вызывает наркотический эффект. Влияние этанола на организм человека.


9 Средняя смертельная доза около 68 г/кг массы тела (на безводный спирт, для «нетренированного» организма). По некоторым источникам диапазон составляет от 4 до 12 г/кг. В связи с тем, что алкоголь в подавляющем большинстве случаев употребляется перорально, эффективность дозы и вероятность наступления смерти в значительной степени зависит от темпа введения, содержимого желудочно-кишечного тракта, пола, конституциональных особенностей. Этанол при хроническом употреблении, даже в малых дозах, вызывает привыкание и зависимость. Влияние этанола на организм человека.


10 При обычном отравлении (алкогольное опьянение) этанол затрудняет сенсорные восприятия, понижает внимание, ослабляет память. При действии этанола характерно расстройство ассоциативных процессов, вследствие чего появляются дефекты мышления, суждений, дефекты ориентировки, самоконтроля, утрачивается критическое отношение к себе и окружающим событиям. Как правило, имеет место переоценка собственных возможностей. Рефлекторные реакции замедленные и менее точные. Часто появляется говорливость. В эмоциональной сфере эйфория, понижение болевой чувствительности (анальгезия). Угнетаются спинномозговые рефлексы, расстраивается координация движений. В большой дозе возбуждение сменяется угнетением и наступает сон. При тяжелом отравлении этанолом наблюдается ступорозное или коматозное состояние; кожа бледная, влажная, дыхание редкое, выдыхаемый воздух имеет запах этанола, пульс частый, температура тела понижена. Влияние этанола на организм человеКА.

ТЕМА 36:Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина

Растворение глицерина в воде и взаимодействие с гидроксидом меди(II). 


ГРУППА 505 ХИМИЯ 21,22

ТЕМА 21: Состав смесей: объемная и массовая доли компонентов смеси, массовая доля примесей.


Смесь – структура, образующаяся из двух и более веществ. 

Вещества, входящие в состав смеси, называют компонентами. 

Например, воздух – смесь азота, кислорода, углекислого газа и других.

 Если масса одного компонента в десятки раз меньше массы другого компонента смеси, то его называют примесью.

 Например, воздух может быть загрязнен угарным газом. 

Массовая доля в жидких и твердых смесях рассчитывается по формуле: 

Массовая доля в смеси газов (φ) рассчитывается по формуле:

   Задача. В 10 мл дистиллированной воды растворили 1 г поваренной соли. Найдите массовую долю растворенного вещества.

 Найти массу раствора. m (р-ра) = m (H2O) + m (NaCl) = 10 г + 1 г = 11 г

 Найти массовую долю соли. ω (NaCl) = (1 г/11 г) * 100 % = 9,09 % 

Ответ: ω (NaCl) = 9,09 %   

Задача. В 4 л растворе содержится 100 г соляной кислоты HCl.

 Рассчитайте массовую долю растворенного вещества, учитывая, что плотность соляной кислоты – 1,098 г/мл.

 Найти массу вещества. m(р-ра) = V * p = 4000 мл * 1,098 г/мл = 4392 г

 Найти массовую долю кислоты. ω (НCl) = (100 г/4392 г) * 100 % = 2,277 %

 Ответ: ω (НCl) = 2,277 % 

  Задача. К 700 г 48%-ного раствора добавили 30 г это же соли, которая находится в растворе. Определите массовую долю в полученной смеси?

 Найти массу раствора. 

m(р-ра) = 700 г + 30 г = 730 г 

Найти массу растворенного вещества в исходном растворе.

 m1(соли) = 700 г * 48 %/ 100 % = 336 г 

Найти массу вещества в полученном растворе. m2 (соли) = 336 г + 30 г = 366 г 

Найти массовую долю соли в растворе.

 ω (соли) = 366 г * 100 %/ 730 г = 50,137 % 

Ответ: ω (соли) = 50,137 %

 В жизни редко встречаются чистые вещества, чаще - смеси веществ. Воздух – это смесь азота, кислорода и других газов, морская вода – смесь воды и растворенных солей.

Смеси - это физические сочетания чистых веществ, не имеющие определенного или чистого состава.

Примером смеси может служить обыкновенный чай (напиток), который многие самостоятельно готовят и пьют по утрам.

Кто-то любит крепкий чай (большое кол-во заварки), кто-то любит сладкий чай (большое кол-во сахара)… Как видим, смесь под названием "чай" всегда получается немного разной, хотя и состоит из одних и тех же компонентов. Однако, следует отметить, что каждый компонент смеси сохраняет набор своих характеристик, поэтому, разные вещества можно выделить из смеси.

Гомогенные и гетерогенные смеси.

 Гетерогенные смесиполностью не смешаны, так как чистые вещества существуют в ясно отграниченных фазах, то есть это многофазные материалы.

Гомогенные смеси — это на молекулярном уровне смешанные чистые вещества, то есть однофазные материалы.

Гомогенные смеси делятся по агрегатному состоянию на три группы:

- газовые смеси;

- растворы;

- твёрдые растворы.

Гетерогенные смеси двух веществ можно разделить по агрегатным состояниям на следующие группы:

 Твёрдые частичкиКапли жидкостиПузырьки газа
В твердом телеСплавКапиллярная системаТвёрдая пена, порошок
В жидкостиСуспензияЭмульсияПена
В газеАэрозольТуманНеустойчиво

Основные способы разделения смеси

Существуют различные методы разделения смесей. Для газов эти методы основаны на разнице в скоростях либо массах молекул веществ, входящих в смесь.


ТЕМА 22: Дисперсные системы. Понятие о дисперсной системе. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Понятие о коллоидных системах.

ГРУППА 501 ХИМИЯ 38,39

ТЕМА 38:Основания и их свойства. Испытание растворов щелочей индикаторами. Взаимодействие щелочей с солями. Разложение нерастворимых оснований. 

 ПЛАН 

1)     Определение оснований.

a)     Исходя из состава,

b)     Как электролита.

2)     Классификация оснований.

a)     По растворимости в воде,

b)     По силе электролита

c)     По числу гидроксильных групп,

3)     Химические свойства оснований.

a)     Действие на индикаторы,

b)     Взаимодействие с кислотными оксидами,

c)     Взаимодействие с кислотами,

d)     Разложение при нагревании,

e)     Взаимодействие с солями.

 

 

Основания – это сложные вещества, в молекулах которых атомы металла соединены с одной или несколькими гидроксильными группами.

Основания – это электролиты, которые при диссоциации образуют в качестве анионов только гидроксид-ионы.

NaOH ® Na+ + OH-

Ca(OH)2 ® CaOH+ + OH- ® Ca2+ + 2OH- -

 

Существует несколько признаков классификации оснований:

  1. В зависимости от растворимости в воде основания делят на щёлочи и нерастворимые. Щелочами являются гидроксиды щелочных металлов ( Li, Na, K, Rb, Cs) и щелочноземельных металлов ( Ca, Sr, Ba ). Все остальные основания являются нерастворимыми.
  2. В зависимости от степени диссоциации основания делятся на сильные электролиты ( все щёлочи ) и слабые электролиты ( нерастворимые основания ).
  3. В зависимости от числа гидроксильных групп в молекуле основания делятся на однокислотные ( 1 группа ОН ), например, гидроксид натрия, гидроксид калиядвухкислотные ( 2 группы ОН ), например, гидроксид кальция, гидроксид меди(2), и многокислотные.

Химические свойства.

Ионы ОН- в растворе определяют щелочную среду.

  1. Растворы щелочей изменяют окраску индикаторов:

Фенолфталеин: бесцветный ® малиновый,

Лакмус: фиолетовый ® синий,

Метилоранж : оранжевый ® жёлтый.

  1. Растворы щелочей взаимодействуют с кислотными оксидами с образованием солей тех кислот, которые соответствуют реагирующим кислотным оксидам. В зависимости от количества щёлочи образуются средние или кислые соли. Например, при взаимодействии гидроксида кальция с оксидом углерода(IV) образуются карбонат кальция и вода:

Ca(OH)+ CO2 = CaCO3? + H2O

Ca2+ + 2OH- + CO2 = CaCO3 + H2O

А при взаимодействии гидроксида кальция с избытком оксида углерода(IV) образуется гидрокарбонат кальция:

Ca(OH)2 + CO2 = Ca(HCO3)2

Ca2+ + 2OH- + CO2 = Ca2+ + 2HCO32-

  1. Все основания взаимодействуют с кислотами с образованием соли и воды, например: при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода:

NaOH + HCl = NaCl + H2O

Na+ + OH- + H+ Cl- = Na+ Cl- + H2O

OH- + H+ = H2O.

Гидроксид меди(II) растворяется в соляной кислоте с образованием хлорида меди(II) и воды:

Cu(OH)2 + 2HCl = CuCl2 + 2H2O

Cu(OH)2 + 2H+ + 2Cl- = Cu2+ + 2Cl- + 2H2O

Cu(OH)2 + 2H+ = Cu2+ + 2H2О.

Реакция между кислотой и основанием называется реакцией нейтрализации.

  1. Нерастворимые основания при нагревании разлагаются на воду и соответствующий основанию оксид металла, например:

t0 t0

Cu(OH)= CuO + H2Fe(OH)3 = Fe2O3 + 3H2O

  1. Щёлочи вступают во взаимодействие с растворами солей, если выполняется одно из условий протекания реакции ионного обмена до конца ( выпадает осадок), например: при взаимодействии гидроксида натрия с раствором сульфата меди(II) образуется осадок гидроксида меди(II).

2NaOH + CuSO4 = Cu(OH)2? + Na2SO4

2OH- + Cu2+ = Cu(OH)2

Реакция протекает за счёт связывания катионов меди с гидроксид-ионами.

При взаимодействии гидроксида бария с раствором сульфата натрия образуется осадок сульфата бария.

Ba(OH)2 + Na2SO4 = BaSO4? + 2NaOH

Ba2+ + SO42- = BaSO4

Реакция протекает за счёт связывания катионов бария и и сульфат-анионов

ТЕМА:39.Основания как электролиты, их классификация по различным признакам. Химические свойства оснований в свете теории электролитической диссоциации.


Основания – это сложные вещества, состоящие из атомов металлов и одной или нескольких гидроксогрупп (ОН-).

С точки зрения теории электролитической диссоциации  это электролиты (вещества, растворы или расплавы которых проводят электрический ток), диссоциирующие в водных растворах на катионы металлов и анионы только гидроксид - ионов ОН-.

Растворимые в воде основания называются щелочами.            К ним относятся основания, которые образованы металлами 1-й группы главной подгруппы (LiOHNaOH и другие) и щелочноземельными металлами (Са(ОН)2Sr(ОН)2Ва(ОН)2). Основания, образованные металлами других групп периодической системы в воде практически не растворяются. Щелочи в воде диссоциируют полностью:

NaOH ® Na+ + OH-.

 

Многокислотные основания в воде диссоциируют  ступенчато:

 

Ba(OH)2 ® BaOH+ + OH-,

Ba(OH)+  Ba2+ + OH-.

 

Cтупенчатой диссоциацией оснований объясняется образование основных солей.

 

Получение

 

1. Взаимодействие активного металла с водой:

 

2Na + 2H2O → 2NaOH + H2

Ca + 2H2O → Ca(OH)2 + H2

Mg + 2H2O  Mg(OH)2 + H2

2. Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):

 

Na2O + H2O → 2NaOH,

CaO + H2O → Ca(OH)2.

 

3. Промышленным способом получения щелочей является электролиз растворов солей:

 

2NaCI + 4H2O 2NaOH + 2H2 + CI2

 

4. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

Na2SO4 + Ba(OH)2 → 2NaOH + BaSO4

MgSO4 + 2NaOH → Mg(OH)2 + Na2SO4.


Нерастворимые основания

 Определение Нерастворимые основания ― основания, в составе которых нет активных металлов (подгруппы Ia и IIа ниже магния).

 Получение • Способ получения нерастворимых оснований ― соль + щелочь: Fe(NO3)3 + 3NaOH → Fe (OH)3↓ + 3NaNO3 Fe3+ + 3OH- → Fe(OH)3 • Нерастворимые основания нельзя получить из соответствующего оксида и воды ― они не реагируют (искл.оксид магния). MeO + H2O — не реагирует Неактивный Классификация нерастворимых оснований • основные • амфотерные нерастворимые основания основные амфотерные формула MeOH +1; +2 (кр. искл) MeOH +3; +4; (+2) искл. разлагаются при повышении температуры Cu(OH)2 → CuO + H2O синий черный во влажном состоянии Zn(OH)2 → ZnO + H2O реагируют с кислотами Mg(OH)2 + 2HCl → MgCl2 +2H2O Mg(OH)2 + 2H+ → Mg2+ + 2H2O Be(OH)2 + 2HCl → BeCl2 + 2H2O Be(OH)2 + 2H+ → Be2+ + 2H2O реагирует со щелочами в растворе NaOH + Al(OH)3 → Na[Al(OH)4] OH- + Al(OH)3 → [Al(OH)


 




Комментариев нет:

Отправить комментарий