понедельник, 6 марта 2023 г.

06.03.23 г. Понедельник , группы:306, 401, 401,403

 Здравствуйте, уважаемые студенты,  записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что  всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com     Тетрадь привезете, когда перейдем на очную форму обучения.)

Моя почта   rimma.lu@gmail.com      Жду ваши фотоотчеты! 

 СПРАВА НАХОДИТСЯ АРХИВ- ТАМ СМОТРИМ ДАТУ И ГРУППЫ

РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 06.03.23г. - 10.03.23г.

 Пн.06.03: 306, 401, 401, 403 

Вт. 07.03:508, 505, 505, 501

Ср. 08.03: 406, 403, 401, 501

 Чт. 09.03:  501, 306, 508

 Пт. 10.03: 505,  501  

ГРУППА 306 БИОЛОГИЯ 66,67

ТЕМА 66,67Сообщества и экосистемы. Экосистема: устройство и динамика.


Популяции в природе не живут изолированно. Они взаимодействуют с популяциями других видов, образуя вместе с ними целостные системы ещё более высокого надвидового уровня организации — биотические сообщества, экосистемы.
Сообществом (биоценозом) называется совокупность видов растений и животных, длительное время сосуществующих в определённом пространстве и представляющих собой определённое экологическое единство.
Эти образования развиваются по своим законам. Одна из главных задач экологии — выявить эти законы; выяснить, как поддерживается устойчивое существование и развитие сообществ, какое влияние оказывают на них изменения различных факторов среды.

О том, что сообщества — не случайные образования — свидетельствует то, что в сходных по географическому положению и природным условиям районах возникают похожие сообщества.
Пример:
озёра средней полосы характеризуются большим сходством фауны и флоры. В составе рыбного населения можно легко обнаружить такие хорошо всем знакомые виды, как плотва, окунь, щука, ёрш и др.
При внимательном изучении обнаруживается не только сходство видов в биоценозах, но и сходство связей между ними. Эти связи чрезвычайно разнообразны. Входящие в сообщество виды снабжают друг друга всем необходимым для жизни — пищей, укрытиями, условиями для размножения. Взаимосвязи живых организмов позволяют более полно расходовать природные ресурсы. Они ограничивают увеличение количества особей тех или иных видов, т. е. выполняют регулирующую функцию и обеспечивают устойчивость экосистем.
Природное жизненное пространство, занимаемое сообществом, называется биотопом (или экотопом).
 

Биотоп и биоценоз образуют биогеоценоз, в котором длительное время поддерживаются устойчивые взаимодействия между элементами живой и неживой природы.

  
[BI9ZD_8-01]_[IL_02]-k.png
Биогеоценоз — исторически сложившаяся совокупность живых организмов (биоценоз) и абиотической среды вместе с занимаемым ими участком земной поверхности (биотопом).
Граница биогеоценоза определяется обычно по растительному сообществу (фитоценозу).
 
Растительные сообщества обычно не имеют резких границ и переходят друг в друга постепенно при изменении природных условий.
Переходные зоны между сообществами называют экотоны.
Пример:
на границе лесов и тундры на севере нашей страны имеется переходная зона — лесотундра. Здесь чередуются редколесья, кустарники, сфагновые болота, луга. На границе леса и степи простирается зона лесостепи. Более увлажнённые участки этой зоны заняты лесом, сухие — степью.
От участка к участку меняется не только состав растительности, но и животный мир, особенности вещественно-энергетического обмена между организмами и физической средой их обитания.
Экосистема (от греч. oikos — «жилище» и systema — «объединение») — это любое сообщество живых организмов вместе с физической средой их обитания, объединённые обменом веществ и энергии в единый комплекс.
Рассмотрение экосистемы важно в тех случаях, когда речь идёт о потоках вещества и энергии, циркулирующих между живыми и неживыми компонентами природы, о динамике элементов, поддерживающих существование жизни, об эволюции сообществ. Ни отдельный организм, ни популяцию, ни сообщество в целом нельзя изучать в отрыве от окружающей среды. Экосистема, по сути, это то, что мы называем природой.
Пример:
экосистема озера, в состав которой входят все живые организмы, а также среда их обитания, которая включает воду, особенности дна и грунта, соприкасающийся с водой воздух, солнечное излучение и т. д.
Экосистема и биогеоценоз — близкие понятия, но если термин «экосистема» подходит для обозначения систем любого ранга, то  «биогеоценоз» — понятие территориальное, относимое к таким участкам суши, которые заняты растительными сообществами — фитоценозами.
 
Обрати внимание!
Не любая экосистема является биогеоценозом, но любой биогеоценоз — экосистема.
Экосистема — понятие очень широкое и применимое как к естественным (например, тундра, океан), так и к искусственным комплексам (например, аквариум).
Масштабы экосистем могут быть различны.
  • Микроэкосистема.
Пример:почка дерева, лужа, разрушающийся пень с его обитателями.
  • Мезоэкосистема = биогеоценоз.
Пример:ельник, дубрава, березняк, луг.
  • Макроэкосистема — биом, или природная зона.
Пример:пустыня, тундра, океан.
Все экосистемы нашей планеты взаимосвязаны и составляют единую большую экосистему — биосферу. Она охватывает часть атмосферы, часть литосферы и всю гидросферу. Целостное учение о биосфере создал выдающийся отечественный ученый В. И. Вернадский.


ГРУППА 401 ХИМИЯ  46,47,48

ТЕМА 46,47: Амины. Понятие об аминах. Алифатические амины, их классификация и номенклатура.Анилин, как органическое основание. Получение анилина из нитробензола. Применение анилина на основе свойств. 


Определение

Амины – класс органических соединений, производные аммиака () и гидрата аммиака , у которых один или несколько атомов водорода замещены на углеводородный радикал. Общая формула гомологического ряда 

СТРОЕНИЕ И КЛАССИФИКАЦИЯ АМИНОВ

Поскольку амины являются продуктами замещения водорода в аммиаке, то все они являются донорами электронной пары, принадлежащей атому азота, то есть проявляют свойства оснований (по Льюису). 

Амины классифицируют:

1. По степени замещенности атомов водорода в молекуле аммиака на

  • первичные амины ();
  • вторичные ()
  • третичные ()
  • четвертичные  соли аминов

 

Радикалы, входящие в молекулу амина могут быть одинаковыми или разными.

2. По типу радикала выделяют амины алифатического и ароматического ряда. Типичным представителем ряда ароматических аминов является анилин 

Изомерия алифатических аминов

Для алифатических аминов характерна следующая изомерия:

  • углеродного скелета (степени разветвленности углеводородного радикала) начиная с 

  •   положение аминогруппы, начиная с 

  •  изомерия аминогруппы (межклассовая изомерия), связанная с изменением степени замещенности атомов водорода при азоте. Поэтому первичные, вторичные и третичные амины изомерны друг другу:

  •  пространственная изомерия (оптическая, начиная с бутиламина)

НОМЕНКЛАТУРА АМИНОВ

1. По систематической номенклатуре амины называют путем добавления суффикса "амин" к названию углеводорода.

2. По рациональной номенклатуре их рассматривают как алкил- или ариламины.

У ароматических аминов в основе названия также лежит слово амин, кроме того такие соединения имеют тривиальные названия:

3. Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -. Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:        1,4-диаминобутан

ФИЗИЧЕСКИЕ СВОЙСТВА

Первые представители ряда аминов - метиламин, диметиламин и триметиламин – газы. Остальные низшие амины – жидкости. Обладают резким характерным удушливым запахом. Канцерогены. Высшие амины – твердые вещества, без запаха. Первые представители аминов хорошо растворимы в воде. Высшие амины в воде не растворяются. Это связано с тем, что связь N–H более полярна, чем связь С–H, но менее полярна, чем связь C–O, поэтому водородные связи между молекулами аминов выражены слабее, чем, например, в молекулах спиртов.

Основные представителя ряда аминов

Алкиламины

Метиламин  - при нормальных условиях бесцветный газ с запахом аммиака. Как правило используется в виде растворов: 40 % масс в воде, в метаноле, этаноле или ТГФ (тетрагидрофуранее). Метиламин применяется для синтеза пестицидов, лекарств, красителей. Наиболее важными из продуктов являются N-Метил-2-пирролидон (NMP), метилформамид, кофеин, эфедрин и N,N'-диметилмочевина. 

По своим химическим свойствам метиламин является типичным первичным амином, то есть подобно аммиаку, образует четвертичные соли с кислотами и реагирует с водой, образуя донорно-акцепторную связь, при взаимодействии со сложными эфирами или ацилхлоридами дает амиды (подробнее см. тему: "Производные карбоновых кислот. Амиды. Ангидриды. Хлорангидриды")

Триметиламин , подобно другим низкомолекулярным аминам, является газом с аммиачным, или "рыбным" запахом, образуется в природе при разложении рыбы. В промышленности триметиламин получают взаимодействием метилового спирта или диметилового эфира с аммиаком; используют для производства бактерицидов, флотореагентов, кормовых добавок. 

Ароматические амины

Анилин  -  бесцветная маслянистая жидкость, которая быстро становится бурой при контакте с воздухом и светом, тяжелее воды

Токсическое действие анилина

Анилин ядовит, действует на центральную нервную систему, вызывает в крови образование метгемоглобина и дегенеративные изменения эритроцитов, гемолиз, следствием чего является кислородное голодание организма.

Анилин проникает в организм через органы дыхания в виде паров, а также при всасывании через кожу и слизистые оболочки, которое особенно усиливается при повышении температуры воздуха и приёме алкоголя. Возможны острые и хронические (анилизм) отравления анилином. При лёгком отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин, ногтей. При отравлениях средней тяжести присоединяется тошнота, иногда рвота, появляется шатающаяся походка; пульс учащён. Тяжёлые случаи отравления встречаются крайне редко. При хронических отравлениях — токсический гепатит, нервно-психические нарушения, расстройство сна, снижение памяти и т. д.



ТЕМА 48:Аминокислоты.Белки. Первичная, вторичная, третичная структуры белков.

Белки (протеиныполипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.
Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).
700px-AminoAcidball_rus.svg_.png
Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.
белок движ.gif
Структура белковой молекулы
Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.
В молекулах белков встречается всего 20 видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.
  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка. Она уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.
белок (2).jpg
 
Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.
Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.
 
денатурация белка.jpg
Разрушение первичной структуры необратимо.
 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.


ГРУППА 403 ХИМИЯ 10,11


ТЕМА 10:Фенол. Физические и химические свойства фенола. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Применение фенола на основе свойств.

Спирты – это гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где m ≤ n.

Классификация фенолов

ПО ЧИСЛУ ГИДРОКСИЛЬНЫХ ГРУПП:

  • фенолы с одной группой ОН — содержат одну группу -ОН. Общая формула CnH2n-7OH или CnH2n-6O
  • фенолы с двумя группами ОН — содержат две группы ОН. Общая формула CnH2n-8(OH)2 или CnH2n-6O2.

Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты:

Строение фенолов

В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.

 

Химические свойства фенолов

Сходство и отличие фенола и спиртов.

 

Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.

Отличия:

  • фенол не реагирует с галогеноводородами: ОН- группа очень прочно связана с бензольным кольцом, её нельзя заместить;
  • фенол не вступает в реакцию этерификации, эфиры фенола получают косвенным путем;
  • фенол не вступает в реакции дегидратации.
  • фенол обладает более сильными кислотными свойствами и вступает в реакцию со щелочами.

 

1. Кислотные свойства фенолов

Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается. 

Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.

 

1.1. Взаимодействие с раствором щелочей

 

В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.

Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия

Видеоопыт взаимодействия фенола с гидроксидом натрия можно посмотреть здесь.

Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:

 

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

 

Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.

Например, фенол взаимодействует с натрием с образованием фенолята натрия и водорода.

Видеоопыт взаимодействия фенола с натрием можно посмотреть здесь.

 

2. РЕАКЦИИ ФЕНОЛА ПО БЕНЗОЛЬНОМУ КОЛЬЦУ

Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце.

2.1. Галогенирование

Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол).


Видеоопыт взаимодействия фенола с бромом можно посмотреть здесь.

 

2.2. Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.

Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол  (пикриновая кислота):

 

3. ПОЛИКОНДЕНСАЦИЯ ФЕНОЛА С ФОРМАЛЬДЕГИДОМ

С формальдегидом фенол образует фенолоформальдегидные смолы.

4. ВЗАИМОДЕЙСТВИЕ С ХЛОРИДОМ ЖЕЛЕЗА (III)

При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.

Видеоопыт взаимодействия фенола с хлоридом железа (III) можно посмотреть здесь.

 

5. ГИДРИРОВАНИЕ (ВОССТАНОВЛЕНИЕ) ФЕНОЛА

Присоединение водорода к ароматическому кольцу.

Продукт реакции – циклогексанол, вторичный циклический спирт.

 

Получение фенолов

1. ВЗАИМОДЕЙСТВИЕ ХЛОРБЕНЗОЛА С ЩЕЛОЧАМИ

 

При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.

При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.

 

2. КУМОЛЬНЫЙ СПОСОБ

 

Фенол в промышленности получают из каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Суммарное уравнение реакции:

 

3. ЗАМЕЩЕНИЕ СУЛЬФОГРУППЫ В БЕНЗОЛ-СУЛЬФОКИСЛОТЕ

Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:

 Получается фенолят натрия, из которого затем выделяют фенол:




ТЕМА 11:Альдегиды. Понятие об альдегидах. Альдегидная группа как функциональная. Формальдегид и его свойства: окисление в соответствующую кислоту, восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида на основе его свойств.


Альдегиды - органические вещества, молекулы которых содержат карбонильную группу ——, связанную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов  или R—CHO. Функциональная группа альдегидов (—CHO) называется альдегидной группой.




Альдегиды и кетоны называются карбонильными соединениями, их общая формула - CnH2nO.

Изомеры и гомологи

г

о

м

о

л

о

г

и
HCHO
метаналь (формальдегид, муравьиный альдегид)
CH3CHO
этаналь (ацетальдегид, уксусный альдегид)
CH3CH2CHO
пропаналь (пропионовый альдегид)
CH3—CO—CH3
пропанон (ацетон)
CH3CH2CH2CHO
бутаналь (масляный альдегид)

2-метилпропаналь
CH3—CO—CH2CH3
бутанон (метилэтилкетон)
и з о м е р ы


В молекулах альдегидов, а тем более кетонов, в отличие от спиртов нет атомов водорода со значительным положительным частичным зарядом, поэтому между молекулами как альдегидов, так и кетонов нет водородных связей.


Химические свойства

Химические свойства альдегидов и кетонов в значительной степени обусловлены наличием в их молекулах сильно полярной карбонильной группы (связь  поляризована в сторону атома кислорода). Чем больше частичный заряд (+) на атоме углерода этой группы, тем выше активность соединения.

  1. Горение:
    2CH3CHO + 5O2  4CO2 + 4H2O
    2CH3COCH3 + 9O2  6CO2 + 6H2O


  2. Присоединение (по двойной связи карбонильной группы).
    В ряду HCHO  RCHO  RCOR' склонность к реакциям присоединения уменьшается. Это связано с наличием и числом углеводородных радикалов, связанных с атомом углерода карбонильной группы.

    а) Гидрирование (восстановление водородом):
    HCHO + H2  CH3OH
    CH3—CO—CH3 + H2  CH3—CH(OH)—CH3

    Из альдегидов при этом получаются первичные спирты, а из кетонов - вторичные.

  3. Окисление:
    CH3CHO + Ag2 2Ag + CH3COOH (реакция "серебряного зеркала" - качественная реакция)
    HCHO + 2Cu(OH)2  2H2O + Cu2O + HCOOH (образуется красный осадок - качественная реакция)

    Кетоны слабыми окислителями не окисляются.

  4. Замещение атомов водорода в углеводородном радикале (замещение происходит в -положение, т. е. замещается атом водорода у 2-го атома углерода):
    32()1
    CH3—CH2—CHO+ Cl2  CH3—CHCl—CHO + HCl

    Формальдеги́д (от лат. formīca — «муравей»[4]) — органическое соединение, бесцветный газ с резким неприятным запахом, хорошо растворимый в воде, спиртах и полярных растворителях. Ирритантконтаминантканцерогенен. В больших концентрациях ядовит.

    Формальдегид — первый член гомологического ряда алифатических альдегидов, альдегид метанола и муравьиной кислоты.

Он, в основном, используется в производстве смол — бакелита, галалита (в сочетании с мочевиной, меламином и фенолом), для дубления кож, протравливания зерна. Также из него синтезируют лекарственные средства (уротропин) используют как консервант биологических препаратов (благодаря способности свертывать белок).

Комментариев нет:

Отправить комментарий