ВТОРНИК, 17.11.20 г. 208,301,106,303 группы
ГРУППА 208 биология
Тема:
Случайные изменения частот генов и генотипов в популяции (Генетическое равновесие в популяции и его нарушение. Изоляция, миграция, дрейф генов, волны жизни).
— Под действием естественного отбора эволюционные изменения популяций всегда сопровождаются направленными изменениями генофонда. Вследствие естественного отбора в популяциях закрепляются полезные гены, то есть благоприятствующие выживанию в данных условиях среды. Доля таких генов возрастает, и общий состав генофонда меняется.
— Причиной изменений генофонда популяций может быть не только отбор, но и другие факторы.
— Рассмотрим их, определим их значение в процессе эволюции.
Для выявления закономерностей, которым подчиняются изменения генофонда, нужно знать, что происходит с частотами аллелей и генотипов в различных условиях. Для начала необходимо ответить на вопрос, как будут изменяться эти частоты в идеальных условиях: численность популяции бесконечно большая, скрещивание всех особей внутри популяций равновероятно и не испытывает никаких затруднений, популяция изолирована, в популяции у особей не возникают новые мутации, естественный отбор не действует.
Сохраняется ли генофонд, таких популяций постоянным или он изменяется?
В 1908 году английский математик Г.Г. Харди немецкий врач В.Р. Вайнберг независимо друг от друга сформулировали и математически доказали, что в популяциях, живущих изолировано, в условиях слабого давления естественного отбора устанавливается генетическое равновесие, то есть наблюдается постоянство частот аллелей различных генов.
Частоты генов, а соответственно и генотипов остаются неизменными из поколения в поколение — это одно из основных положений закона Харди-Вайнберга (напомню, действует только в идеальных популяциях).
Ясно, что ни одна реальная популяция не удовлетворяет этим условиям. Все популяции имеют конечную численность. Обычно они не полностью изолированы друг от друга, каждая популяция неоднородна внутри себя, все гены мутируют и многие мутации имеют селективное значение.
Процессы, обусловливающие “неподчинение” популяции закону Харди-Вайнберга и нарушающие ее генотипическое равновесие, становятся факторами эволюции. Один из этих факторов — мутационный процесс — мы уже рассмотрели.
К числу других факторов, имеющих важное эволюционное значение, относятся изоляция популяций, колебания их численности (“волны жизни”), генетико-автоматические процессы (дрейф-генов).
Необходимую предпосылку для действия всех этих факторов создает скрытое генотипическое разнообразие популяций. Скрытое генотипическое разнообразие в популяциях имеет большой эволюционный смысл: оно позволяет запастись такими вариантами изменчивости, которые обеспечивают быструю адаптацию организмов при появлении в среде новых факторов и при резких изменениях экологической обстановки.
Рассмотрим это на конкретном примере.
Показательный пример возможного использования скрытого генотипического разнообразия (мобилизационного резерва изменчивости) дают популяции насекомых, вырабатывающие устойчивость к инсектицидам.
В нашей стране ДДТ (дихлордифенилтрихлорэтан) впервые был применен в 1942 г. в г. Москве для борьбы с комнатной мухой, а уже в 1946 г. появились первые сообщения о возникновении устойчивых линий этой мухи. Потом оказалось, что регулярное и широкомасштабное использование любого инсектицида в течение нескольких лет обязательно приводит к появлению линий, отличающихся высокой устойчивостью к этому препарату. Конечно, химический яд — это сильнейший фактор отбора. Но учитывая низкую частоту мутаций и их случайный неприспособительный характер, кажется маловероятным, чтобы каждый раз в нужном месте и всего лишь за несколько лет появлялись удачные мутации, обеспечивающие устойчивость к этому фактору. Более вероятно, что естественный отбор извлекает из богатого мобилизационного резерва такие аллели, которые могут быть использованы для создания устойчивости насекомых к ядохимикату.
Итак, изоляция “волны жизни”, дрейф генов, миграция — причины нарушения генетического равновесия, факторы, изменяющие частоты аллелей и генотипов в популяции.
Генетико-автоматические процессы (дрейф генов)
Дрейф генов - случайное ненаправленное изменение частоты генов в популяции.
Дрейф генов наблюдается в малых популяциях, где вероятность случайности велика. Эти различного рода случайности и определяют дальнейшую судьбу генофонда малой популяции.
Это было доказано экспериментально. В пробирки с кормом посадили по две самки и два самца мух дрозофил, гетерозиготных по аллелю А (Ад). В такой искусственно созданной популяции соотношение нормального и мутационного аллелей было одинаковым. Спустя несколько поколений оказалось, что частота мутационного аллеля меняется случайным образом. В некоторых популяциях он был утрачен, в других, наоборот, все особи стали гомозиготными по мутационному аллелю, часть популяции содержала нормальный и мутационный аллели.
Дрейф генов малой популяции может привести к ее исчезновению, но может и способствовать большей приспособляемости ее к среде.
“Волны жизни” и их роль в эволюции
“Волны жизни” (популяционные волны)— периодическое чередование подъемов и спадов численности популяций (термин введен в 1905 г.
С.С. Четвериковым).
Причины колебания численности популяций:
а) хищничество;
б) вспышки эпидемий;
в) засухи, пожары, наводнения и другие природные катастрофы;
г) освоение организмами новых территорий с подходящими для жизни условиями и др.
На численность популяции влияют одновременно многие факторы, которые неизбежно приводят к периодическим или непериодическим, сезонным или годовым изменениям численности любого из известных видов животных и растений.
Роль в эволюции
В 1905 г. С.С. Четвериков прозорливо утверждал, что популяционные волны могут оказывать сильное влияние на интенсивность и направление естественного отбора. В самом деле, когда численность какой-либо популяции резко снижается, от нее могут остаться лишь немногие особи. Как во всякой случайной и немногочисленной выборке, частоты генов в этой “микросовокупности” особей будут иными, чем в исходной популяции. Но ведь именно эта немногочисленная группа дает начато новым усиленно размножающимся поколениям и тем самым определяет генетическую структуру популяции во время подъема численности.
В этом заключается “принцип бутылочного горлышка”; немногие особи, пережившие спад численности, как бы проникли через “узкое горлышко”, пронесли через него свойственные им генотипы и распространили их на всю популяцию. При этом некоторые, ранее присутствующие аллели могут быть безвозвратно утеряны (потому что погибли их носители), а концентрация других аллелей может резко возрасти, потому что их носители проскользнули через “горлышко”. В итоге произойдет случайное изменение частот генов и генотипов в популяциях.
Таким образом, популяционные волны сами по себе не вызывают наследственную изменчивость, а только способствуют изменению генофонда популяции.
“Волны жизни” — это своеобразный фактор — поставщик эволюционного материала, выводящий совершенно случайно и ненаправленно ряд генотипов на эволюционную арену.
Рассмотрим это на схеме, поясняющей изменения генотипического состава популяции при колебании ее численности.
На пике численности I в популяции генотип 3 присутствовал в низкой концентрации, а частоты генотипов 2 и 1 были примерно одинаковы. Во время спада численности генотип 3 был утрачен, а носители генотипа 2 случайно выжили в большем количестве, чем носители генотипа I. В результате на пике численности II начал преобладать генотип 2.
Изоляция и ее значение в эволюции
Изоляция (от франц. “isolation” — отделение, разобщение) — исключение или затруднение свободного скрещивания между особями одного вида, ведущее к обособлению внутривидовых групп и новых видов.
Изоляция создается пространственными барьерами (водные преграды для сухопутных видов, участки суши для гидробионтов, возвышенности, разделяющие равнинные популяции, или равнины, разграничивающие горные популяции), территориальным разобщением в связи с расширением ареала.
Вследствие невозможности скрещивания особей из различных изолированных популяций в каждой из них возникает свое направление эволюционного процесса. Это со временем приводит к значительным отличиям в их генотипической структуре, ослаблению и даже полному прекращению обмена генами между популяциями.
Биологическая изоляция имеет три основные формы — эколого- эгологическую, морфофизиологическую и генетическую:
а) эколого-этологическая изоляция уменьшает вероятность встреч особей для скрещивания;
б) при морфофизиологической изоляции возникают препятствия для оплодотворения, связанные с различиями в строении органов размножения;
в) генетическая изоляция приводит либо к невозможности, либо к неэффективности скрещивания (снижение плодовитости, стерильность гибридов, снижение их жизнеспособности).
Генный поток (миграции) и его роль в эволюции
Миграция в эволюционном смысле означает переселение ряда особей за пределы мест обитания и как следствие — обновление генофонда другой популяции.
Скрещивание между мигрантами и особями других популяций ведет к перекомбинации генов на межпопуляционном уровне, то есть генный поток также является поставщиком материала для естественного отбора.
Причина генного потока — неполная изоляция между соседними популяциями.
Все рассмотренные нами факторы носят случайный, ненаправленный характер. Они сами по себе не могут вызвать целенаправленное изменение генофонда популяции и не могут привести к элементарному эволюционному явлению.
— Единственный фактор, имеющий направленный характер — это естественный отбор. Дрейф генов волны жизни, изоляция, миграция могут лишь повышать или понижать его эффективность.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до


Как и в любой другой биохимической реакции, в этом синтезе участвует фермент — РНК-полимераза.
Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определённого места ДНК. Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза «узнаёт» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.
У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков.
У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.
Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.


На информационной РНК (иРНК) по принципу комплементарности будет синтезирована цепь ГЦУ ААУ ГУУ, в результате чего выстроится цепочка аминокислот: аланин — аспарагин — валин.
Вирусы — это неклеточныв формы жизни, различимые только под электронным микроскопом. Это внутриклеточные паразиты. За пределами клетки они не проявляют своих свойств и имеют кристаллическую форму. |
Строение вирусов |
Наиболее просто организованные вирусы представляют собой нуклеопротеид, состоящий из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки (капсида). Сложные вирусы могут иметь дополнительную оболочку из липопротеина. Некоторые вирусы (бактериофаги) имеют аппарат транспортировки своего генома в бактерии, после проникновения в клетку капсид остается за пределами клетки. Тело бактериофага имеет сложное строение, оно содержит головку, хвостик (трубку, через которую геном проталкивается в клетку) и хвостовые отростки. |
В клетку вирусы могут попасть вместе с пиноцитозными пузырьками или путем погружения части оболочки клетки с приклеившимся к ней вирусом в цитоплазму, а также путем растворения оболочки клетки. |
Вирусы вносят в клетку свою генетическую информацию, и клетка начинает производить подобные вирусы. |
Внутри клетки начинает синтезироваться ДНК или РНК вируса и образуется множество вирусов. В результате клетка гибнет, и вирусы выходят наружу, заражая новые клетки. Встроенный в геном клетки геном вируса может существовать в таком виде долгое время. |
Вирусы вызывают табачную мозаику у растений, оспу, грипп, полиомиелит, гепатит, СПИД у человека. Наибольшую опасность в наше время представляет вирус СПИДа. Он попадает в организм человека при переливании крови, при половых контактах. Этот вирус поражает клетки организма, отвечающие за иммунитет. В результате человек оказывается беззащитным перед инфекционными болезнями и быстро погибает. |
Вирусы, благодаря мутированию и способности быстро размножаться внутри клеток, становятся устойчивыми к действию лекарств, и это обстоятельство затрудняет лечение таких вирусных заболеваний, как грипп, гепатит и др. |
Тема: Сцепленное наследование генов.


Другие результаты получились, когда скрещивали дигибридную самку (серую с нормальными крыльями) с гомозиготным рецессивным самцом (чёрным с короткими крыльями). В этом случае потомство имело четыре фенотипа:


Морган доказал, что частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами в хромосоме. Чем это расстояние больше, тем чаще происходит кроссинговер и тем чаще появляются рекомбинантные организмы.

Энергия запасается в форме энергии химических связей
При распаде
Энергия для синтеза
Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительный, бескислородный и кислородный.

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту
В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.
При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт
Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.
Вспомним, что ещё две молекулы
Суммарная реакция энергетического обмена:
Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.
Комментариев нет:
Отправить комментарий