понедельник, 22 ноября 2021 г.

 ВТОРНИК, 23.11.21 г.  206, 308, 401, 403 


моя почта :   rimma.lu@gmail.com      Жду ваши фотоотчеты!

ГРУППА  206 БИОЛОГИЯ 49,50

ТЕМА: Видообразование – результат эволюции.

Процесс образования видов осуществляется в результате взаимодействия элементарных эволюционных факторов: мутаций, дрейфа генов, естественного отбора, волн жизни и изоляции.

Формы видообразования:

  1. дивергентное (истинное) видообразование — разделение первоначально единого вида на два или более новых. Механизм: изоляция между популяциями — накопление генетических изменений — появление репродуктивной изоляции (невозможности скрещиваться);
  2. филетическое видообразование — постепенное превращение во времени одного вида в другой. Механизм: изменения условий среды захватывают весь ареал — накопление наиболее выгодных изменений у всех популяций вида;
  3. путём гибридизации (гибридогенное) — скрещивание популяций разных видов на территории пересечения их ареалов.

Основные способы видообразования:

1 — филетическое

2 — путём гибридизации (гибридогенное)

3 — дивергентное (истинное)

 

 

Дивергентное видообразование

При разделении одного вида на два и более новых различают два основных механизма видообразования — аллопатрическое и симпатрическое.

Аллопатрическое (географическое) видообразование происходит при географической изоляции между популяциями или вследствие резких отличий в окружающей среде внутри вида.

Симпатрическое (экологическое) видообразование: новый вид образуется внутри ареала исходного вида. С самого начала изоляция является генетической. Такое положение создаётся в результате полиплоидии вследствие нарушений нормального хода мейоза, при крупных хромосомных перестройках или межвидовой гибридизации.


Аллопатрическое видообразование

Аллопатрическое (географическое) видообразование, как правило, происходит медленно и даёт виды, отличающиеся по морфофизиологическому критерию от вида-родоначальника. 

  1. Механизм аллопатрического видообразования:
  2. Возникновение географической преграды (реки) приводит к возникновению изолятов — географически изолированных популяций.

  1. Каждый изолят будет эволюционировать независимо от других популяций. В изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу.
  2. Накопленные изменения в генотипе приводят к репродуктивной изоляции.



В Австралии обитает роскошный горный попугай Polytelis anthopeplus (Lear). В условиях засушливого периода единый ареал разделился пустыней Викторией на два разобщённых между собой ареала — на юго-востоке и юго-западе Австралии. В настоящее время оба подвида отличаются по своему поведению и местообитанию (этологический и экологический критерии). Восточно-австралийская популяция (Polytelis anthopeplus anthopeplus) избегает соседства с человеком и держится в степях с отдельно стоящими колками густых кустарников. Западно-австралийская популяция горного попугая (Polytelis anthopeplus monarchoides), наоборот, охотно заселяет культурный ландшафт и настолько увеличилась в числе, что наносит ощутимый вред полям пшеницы. 

     

Так как между географическими популяциями попугаев не происходит обмена генетической информацией, в будущем возможно возникновение репродуктивной изоляции и, следовательно, видообразования.

Большинство видов, особенно животных, возникают именно аллопатрическим путем.

симпатрическое видообразование

Симпатрическое (экологическое) видообразование происходит на одной территории  и связано с появлением в популяции нескольких групп, особи которых не могут скрещиваться между собой.
Симпатрический путь относительно быстрый и, как правило, даёт виды, близкие к исходному по морфофизиологическим показателям.

Симпатрический путь видообразования у паразитов часто связан с освоением популяцией новых хозяев. Анализ генного состава и межхромосомных различий между человеком и человекообразными обезьянами даёт повод предположить, что разделение этих двух ветвей могло идти симпатрическим путем.
Классическим примером симпатрического видообразования является сверхбыстрая дивергенция рыб-цихлид больших африканских озёр — Малави, Танганьика и Виктория.  Озёра имеют разный возраст, но все они относительно молоды. Каждое озеро изначально было заселено небольшим числом видов рыб, которые стали быстро дивергировать, причём эволюция в каждом озере шла в значительной мере независимо. В озере Танганьика 250 видов цихлид образовалось за 12−15 млн лет, в Малави — 500 видов менее чем за 5 млн лет. Рекордная скорость видообразования зафиксирована в самом молодом озере, Виктории, где на формирование 500 эндемичных видов ушло, по разным оценкам, от 15 до 100 тысяч лет.  Как обычно бывает в подобных случаях, освоение сходных ниш вело к независимому появлению сходных жизненных форм в разных озёрах.

В природе разные виды африканских цихлид обычно не скрещиваются между собой. Репродуктивная изоляция обеспечивается в основном брачными предпочтениями. По-видимому, одним из главных факторов, обеспечивших быстрое видообразование у цихлид, был половой отбор.

Также симпатрическим путём возник новый вид цихлиды в озере Апойо, Никарагуа — учёным удалось показать, что и исходный вид, и новый являются потомками одной когда-то попавшей в это озеро самки (или немногих самок, но митохондриальные ДНК их не сохранились). 
Симпатрическое видообразование, сопровождавшееся дивергенцией по времени цветения, произошло у пальм рода Howea на маленьком вулканическом островке недалеко от Австралии. Один вид этих пальм цветёт в среднем на 6 недель раньше другого. Дизруптивный (разрывающий) отбор, особенно по признакам, связанным с размножением, считается одним из важнейших механизмов симпатрического видообразования. 

Репродуктивная изоляция двух видов ворон — серой и чёрной — обеспечивается мутациями участка хромосомы, отвечающего за цвет оперения и поведение птицы. На границе ареалов происходит гибридизация видов.

   Серая и чёрная вороны


Ареалы серой (слева) и чёрной (справа) ворон.

У видов с половым размножением симпатричеcкое видообразование без географической изоляции происходит довольно редко, т. к. новые мутации либо распространяются в популяции (при возможности скрещивания с особью-мутантом), либо уходят вместе с гибелью носителя (при невозможности скрещивания с особью-мутантом).

Однако у организмов, размножающихся бесполым путем, в том числе у высших растений с вегетативным размножением, один мутант (например, полиплоид), достаточно отличающийся от родительской популяции, чтобы быть генетически изолированным, может дать начало новому виду. 

Вариантами симпатрического видообразования являются полиплоидия и гибридизация.

Полиплоидия — тип геномной мутации: увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом. 

Так, разные виды пшениц составляют ряд с наборами 14, 28, 42 хромосомы. В клетках дикого хлопчатника 26 хромосом, культурного — 52.

Гибридизация — скрещивание организмов разных видов, т. е. объединение различных геномов в одной особи (гибриде).

Культурная слива возникла путем гибридизации тёрна с алычой. Другим примером гибридогенного вида является рябинокизильник, распространённый в лесах центральной Сибири.

Рябинокизильник — природный гибрид рябины и кизила.

ТЕМА: Основные направления эволюционного процесса. Л.Р.№3 «Ароморфозы и идиоадаптации организмов».

Учение о направлениях эволюционного процесса было разработано русским учёным А. Н. Северцовым.
Биологический прогресс — направление эволюции, характеризующееся повышением приспособленности систематической группы живых организмов к среде обитания.
Критерии биологического прогресса:
  • увеличение численности особей;
  • расширение ареала;
  • увеличение числа таксонов (популяций, подвидов, видов и т. д.).
Биологический прогресс — это результат успеха систематической группы в борьбе за существование. Он обеспечивается появлением новых приспособлений, полезных в данной среде обитания. Организмы выживают и размножаются, что приводит к увеличению численности и освоению новых мест обитания. Возникают новые популяции. Они подвергаются действию разнонаправленного естественного отбора и постепенно превращаются в новые виды, виды — в роды, роды — в семейства и так далее. Происходит увеличение числа таксономических групп и их совершенствование.
 
В состоянии прогресса в настоящее время находятся многие сорняки (одуванчик, пырей, марь белая), вредители сельскохозяйственных культур (колорадский жук, фитофтора). Их прогресс связан с деятельностью человека.  
 
Биологический прогресс достигается тремя путями: повышением организации и освоением новой среды обитания; приспособлением к новой среде и её заселением; понижением организации и освоением более простой среды.
 
02-03-2018 20-17-50.jpg
 
Эволюционное изменение, ведущее к усложнению строения и функций организмов, повышающее общий уровень их организации, позволяющее освоить новую среду обитания — ароморфоз.
Ароморфозы привели к возникновению крупных систематических групп: типов, отделов, классов, некоторых отрядов.
  
Примеры ароморфозов у животных:
  • двусторонняя симметрия тела;
  • сквозной кишечник;
  • трахейное дыхание у членистоногих;
  • лёгочное дыхание у позвоночных;
  • альвеолярные лёгкие;
  • четырёхкамерное сердце;
  • два круга кровообращения;
  • теплокровность.
Примеры ароморфозов у растений:
  • возникновение фотосинтеза;
  • формирование тканей;
  • возникновение листа, стебля, корня;
  • появление семени;
  • образование цветка и плода.
Эволюционное изменение, приспосабливающее организмы к конкретным условиям существования, но не повышающее общий уровень их организации — идиоадаптация (алломорфоз).
Идиоадаптации возникают на основе ароморфозов и позволяют систематической группе более полно заселить среду обитания. Приводят к возникновению видов, родов, семейств.
 
Примеры идиоадаптаций:
  • разные типы листьев и стеблей у растений;
  • разное строение цветков у растений;
  • видоизменения побега растений;
  • разные клювы у птиц;
  • разная форма тела и окраска рыб;
  • разные типы ротовых аппаратов насекомых.
 
03-03-2018 11-20-09 — копия.jpg
Идиоадаптации ротовых органов насекомых
Упрощение строения организмов при переходе в более простую среду обитания — дегенерация.
Примеры общей дегенерации:
  • упрощение нервной системы и органов чувств у паразитических червей;
  • редукция пищеварительной системы у ленточных червей;
  • редукция головы у двустворчатых моллюсков;
  • исчезновение крыльев у некоторых паразитических насекомых;
  • редукция листьев у паразитических растений.
 
03-03-2018 17-33-49.jpg
Растение-паразит петров крест
 
03-03-2018 17-36-52.jpg
Двустворчатый моллюск беззубка
Биологический регресс — направление эволюции, характеризующееся понижением приспособленности систематической группы живых организмов к среде обитания и её постепенным вымиранием.
Критерии биологического регресса:
  • снижение численности особей в систематических группах; 
  • сужение ареала;
  • уменьшение числа таксонов (популяций, подвидов, видов и т. д.).
Виды, находящиеся в состоянии регресса, нуждаются в охране и занесены в Красную книгу. Это уссурийский тигрбурый и гималайский медведичёрный аиственерин башмачокженьшень и многие другие.

 Лабораторная работа № 3 по биологии .

Тема: Ароморфозы (у растений) и идиоадаптации (у насекомых).

Цель: сформировать умение выявлять ароморфозы и идиоадаптации у растений и животных, объяснять их значение.

Оборудование: гербарные материалы водорослей, мхов, папоротникообразных, цветковых растений, веточки сосны или ели, коллекции насекомых.

Ход работы

1. Рассмотрите растения: водоросль, мох, папоротник, веточку сосны или ели, цветковое растение — назовите имеющиеся у них органы и заполни Таблицу 1.  Выявите черты усложнения в строении растений этих отделов и раскройте их значение. Определите, по какому направлению шла эволюция растений от водорослей до покрытосеменных.

2.Рассмотрите насекомых разных отрядов (чешуекрылые, прямокрылые, двукрылые и др.), выявите в их строении черты сходства и различия и заполни Таблицу 2. Сделайте вывод о направлении эволюции насекомых.

Таблица 1. Ароморфозы растений

растение

Органы растения

Ламинария

Слоевище, ризоиды.

Папоротник орляк

Корень, стебель, листья, споры.

Сосна крымская

Корень, стебель, листья, семена.

Лютик ползучий

Корень, стебель, листья, цветки, семена.

Ароморфозы – это существенные эволюционные изменения, повышающие уровень организации организмов.

Ароморфозы растений:

- появление корня;

- разделение тела на стебель и листообразные пластинки;

- возникновение оплодотворения, не связанного с водой;

- возникновение семенных зачатков;

- возникновение семени;

- возникновение хвои;

- появление шишки – видоизменённого побега;

- появление в цветках половых органов – мужских (антеридии) и женских (архегонии);

- появление способности к опылению насекомыми.

Вывод: эволюция растений от водорослей до покрытосеменных шла по направлению ароморфозов. В результате ароморфозов повышался уровень организации растений, образовывались новые классы растений, у растений появлялись значительные преимущества в борьбе за выживание и возможность перехода в другую среду обитания.

Таблица 2. Идиоадаптации у насекомых

Отряд насекомых

Части тела

Конечности

Крылья

Ротовой аппарат

двукрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев:

передняя пара хорошо развита, задняя пара - жужжальца

Лижуще-сосущий (муха), колюще-сосущий (комар).

чешуекрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев, покрытых чешуйками

Сосущий (бабочка), грызущий (моль).

прямокрылые

Голова, грудь, брюшко.

3 пары ног

2 пары крыльев:

передняя пара – надкрылья, задняя пара – широкие перепончатые крылья.

Грызущий (кузнечик).

 

Идиоадаптации – это прогрессивные, но незначительные эволюционные изменения.

Идиоадаптации у насекомых проявляются в различном строении ротовых аппаратов. Появление большого разнообразия видов насекомых – следствие их эволюционного развития по пути идиоадаптаций.

Вывод: в результате идиоадаптаций насекомые приспосабливались к среде обитания, образовывались новые виды, рода, семейства, отряды внутри класса. Уровень организации организмов не изменялся.


 


ГРУППА 308 БИОЛОГИЯ 13,14


ТЕМА: Экологическая ниша и межвидовые отношения

П.р. №1 «Составление схем переноса веществ и энергии в экосистемах (пищевых цепей и сетей).

ТЕМА:Экологическая ниша и межвидовые отношения. ПРАКТИЧЕСКАЯ РАБОТА "СОСТАВЛЕНИЕ СХЕМ ПЕРЕНОСА ВЕЩЕСТВ И ЭНЕРГИИ В ЭКОСИСТЕМАХ (ПИЩЕВЫХ ЦЕПЕЙ И СЕТЕЙ)".

Экологическая ниша-место, занимаемое видом (точнее — его популяцией) в сообществе (биоценозе), комплекс его биоценотических связей и требований к абиотическим факторам ср. Введен в 1927 году Чарльзом Элтоном. Эколог ниша представляет собой сумму факто­ров сущ-ния данного вида, основным из кот явл его место в пищ цепочке. Эколог ниша может быть: фундаментальной-определяемой соче­танием усл и ресурсов, позволяющим виду поддерживать жизнеспособную популя­цию;реализованной-св-ва кот обусловлены конкурирующими видами. Разнообразные формы биотических отношений, в кот вступают те или иные виды в биоценозе (конкуренция, комменсализм, мутуализм, хищник-жертва и др.), определяют основные усл их жизни в сооб-ве, возможности добывания пищи и за­воевания нового пространства.

Прямые и косвенные межвидовые отношения подразделяются на 4типа: 1 Трофические связи набл-ся, когда 1-н вид питается другим либо их мертвыми остатками, или продуктами их жиз­нед-ти, При конкуренции 2-х видов за объект питания возникает косвенная трофическая связь, вследствие того что д-ть 1-го отражается на снабжении кормом другого(гусеницы бабо­чек-монашенок, объедая хвою сосен, облег­чают короедам доступ к ослабленным де­ревьям).2.Топические связи харак-ют любое физич или химич изменение усл обитания 1-го вида в рез-те жизнед-ти другого. Заключается в создании 1-м видом ср для другого, в форми­ровании субстрата, на кот поселяются или избегают поселяться представители других видов. Напр, лишайники на стволах деревьев связаны прямой топической связью с организ­мами, представляющими им субстрат или ср обитания. В рез-те положительных или отрица­тельных топических взаимоотношений 1-ни виды определяют или исключают возможность существования в биоценозе других видов. В биоценозе трофич и топич связи имеют наи­большее значение, составляют основу его существования. 3. Форические связи- участие 1-го вида в распространении другого. В роли транспортировщиков выступают живот­ные(перенос животными семян, спор, пыльцы растений-зоохория; перенос более мелких жив- форезия).Перенос осущ-ся с помощью спец и разнообразных приспособлений. Форе­зия животных преимущественно распростра­нена среди мелких членистоногих.Так, многие летающие насекомые-посетители скоплений быстро разлагающихся органических остатков (трупов, животных, куч гниющих растений) несут на себе клещей, переселяющихся данным способом от одного скопления пищ материалов к другому. 4.Фабрические связи – это такой тип биоценотических отношений, в которые вступает вид, использующий для своих сооружений (фабрикаций) продукты выделения, либо мертвые остатки, либо даже живых особей другого вида. Так, птицы употребляют для постройки гнезд ветви деревьев, шерсть млекопитающих, траву, листья, пух и перья других видов птиц и т. п. Личинки ручейников строят домики из кусочков веток, коры или листьев растений, из раковин мелких видов катушек, захватывая даже раковинки с живыми моллюсками.


Лабораторная  работа


«Составление  схем передачи веществ и энергии (цепей  питания), трофических сетей,


построение пирамид биомассы»


Цель: (сформулируйте самостоятельно)


Ход работы.


1.Назовите организмы, которые должны быть на пропущенном месте следующих  пищевых   цепей.


Запишите эти цепи.


2. Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

Пример пищевой сети


3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой   цепи  (задание 1). Биомасса растений составляет 40 тонн.


Вывод: (при составлении вывода работы опишите, что отражают правила экологических пирамид).



Эко­ло­ги­че­ские пи­ра­ми­ды — это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.



 

Различают три типа экологических пирамид: энергии, биомассы и численности.

 

О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах».

Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Принцип построения экологических пирамид

Основание пирамиды образуют продуценты (растения).

Над ними располагаются консументы первого порядка (травоядные).

Следующий уровень представляют консументы второго порядка (хищники).

И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи.



Пирамида биомасс (1) показывает соотношение биомасс организмов разных трофических уровней, изображённых графически таким образом, что длина или площадь прямоугольника, соответствующего определённому трофическому уровню, пропорциональна его биомассе.

В любой трофической цепи не вся пища используется на рост особи, т. е. на формирование биомассы (часть её расходуется на удовлетворение энергетических затрат организмов: дыхание, движение, размножение, поддержание температуры тела и т. д.). Следовательно, в каждом последующем звене пищевой цепи происходит уменьшение биомассы.

Правило экологической пирамиды биомасс отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Пирамида численности, или чисел (2) — отображение числа особей на каждом из трофических уровней данной экосистемы.

Пирамиды чисел отражают только плотность населения организмов на каждом трофическом уровне, но не скорость самовозобновления (оборота) организмов.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения.

По этой причине пирамиды численности могут быть перевёрнутыми, т. е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне.

Например, на одном дереве может жить и кормиться множество насекомых (перевёрнутая пирамида численности).


Перевёрнутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.


 

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы.

Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т. е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

 

Обрати внимание!

Из трёх типов экологических пирамид пирамида энергии даёт наиболее полное представление о функциональной организованности сообществ, так как отражает картину скоростей прохождения массы пищи через пищевую цепь.

 



ГРУППА 401 ХИМИЯ 18

ТЕМА: Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Молекулярная решетка

В узлах молекулярной решетки находятся полярные или неполярные молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Молекулы в кристалле способны совершать незначительные колебания различного характера. Вещества с молекулярным типом решетки, например, органические вещества, кристаллы инертных газов и большинства неметаллов, сухой лед (СО2 тверд.) обладают малой твердостью, низкими температурами плавления и кипения. Эти характеристики объясняются тем, что при приложении незначительной  энергии межмолекулярные связи разрываются и кристалл разрушается с образованием отдельных молекул, что и наблюдается  при плавлении и при испарении кристаллов. Внутри отдельных молекул атомы связаны значительно более прочными связями (ковалентными полярными или неполярными). Эти связи разрушаются при более высокой температуре, и молекулы распадаются на составляющие их атомы (происходит термическая диссоциация).

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы. Роль сил межмолекулярного взаимодействия здесь играют достаточно прочные ковалентные связи. Выделить из общей массы атомов один невозможно. Вещества с атомным типом кристаллической решетки (алмаз, бор, кремний, карборунд SiC, нитрид алюминия и другие) характеризуются очень большой твердостью, иногда сочетающейся с хрупкостью, нерастворимостью в обычных растворителях, очень высокими температурами плавления и кипения. Все связи в кристалле равноценны. При разрыве этих связей, достигаемом лишь при высокой температуре, кристалл диссоциирует на отдельные атомы: плавление, кипение и термическая диссоциация практически совпадают.


ГРУППА 403 ХИМИЯ 26, 27

ТЕМА: Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы.



Тема: Зависимость  растворимости газов, жидкостей и твердых веществ от различных факторов.

Растворимость зависит от природы растворяемого вещества и растворителя, температуры, давления и влияния посторонних веществ.

Природа веществ, образующих раствор. Этот фактор хорошо иллюстрирует старое правило: подобное растворяется в подобном. Под подобием подразумевают природу химической связи в веществах, образующих раствор. Действительно, две неполярные жидкости будут смешиваться друг с другом неограниченно, а неполярная и полярная жидкости будут практически нерастворимы друг в друге.

Вещества, состоящие из неполярных молекул, лучше растворяются в неполярных растворителях, например, сера хорошо растворяется в сероуглероде и практически не растворяется в воде. Кислород в воде растворяется в 10 раз хуже, чем в бензоле.

Вещества с ионным и ковалентным полярным характером связи, как правило, хорошо растворяются в сильно полярных растворителях. Однако ионные кристаллические структуры гораздо прочнее, чем молекулярные, поэтому, когда энергия кристаллической решетки велика, а энергия сольватации низка, растворимость таких соединений в воде мала (BaSO4, CuS, CaF2 и т.д.).

Максимальную энергию кристаллической решетки имеют полимерные соединений с ковалентной связью (алмаз, диоксид кремния и т.д.), поэтому растворимость таких веществ ничтожно мала в любых растворителях.

Температура.

Согласно принципу Ле Шателье, на зависимость растворимости от температуры влияет значение теплового эффект растворения данного вещества в данном растворителе.

Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость будет уменьшаться (например, Ca(OH)2 в воде) и наоборот. Для большинства солей растворимость при нагревании увеличивается.

Практически все газы растворяются с выделением тепла, поэтому растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением температуры - увеличивается.

Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества сильно изменяют свою растворимость в зависимости от температуры, другие - не очень сильно (табл. 2).

Таблица 2.

Влияние температуры на растворимость некоторых твердых веществ.

В таблице приведена растворимость в г/100 г воды

Вещество

Температура, оC

0

20

50

80

100

KBr

53,5

65,2

80,8

94,6

103,3

NaCl

35,7

35,9

36,8

38,1

39,4

CaSO4

0,176

0,206

0,180

0,102

0,066

Если полученные экспериментальным путем значения растворимости при различных температурах нанести на оси координат, то получаются так называемые кривые растворимости различных веществ (рис. 3).

Эти кривые имеют большое практическое значение. Используя эти кривые, можно рассчитать, сколько вещества, например KNO3, выпадет в осадок при охлаждении до 20оС насыщенного раствора, приготовленного при температуре 80оС. На этом основаны процессы, которые позволяют очищать некоторые вещества. Дело в том, что при охлаждении ненасыщенного раствора образуется насыщенный раствор, но насыщенный по основному веществу, которого больше всего, а не по примесям. Поэтому при охлаждении в осадок выпадает только чистое вещество, а примеси (вместе с частью вещества) остаются в растворе. Чистые кристаллы потом отфильтровывают от охлажденного, загрязненного примесями раствора. Этот способ очистки называется ПЕРЕКРИСТАЛЛИЗАЦИЕЙ. Так очищают, например, многие лекарственные препараты.

Кривые растворимости твердых (а) и газообразных (б) веществ

Рис. 3. Кривые растворимости твердых (а) и газообразных (б) веществ.

Давление. По принципу Ле Шателье увеличение давления смещает равновесие в сторону уменьшения объема системы. При растворении твердых веществ в жидкости объем изменяется мало, поэтому давление не будет существенным образом влиять на растворимость солей. Также влияние давления практически не будет проявляться и для смеси двух жидкостей.

Растворимость газов сильно зависит от давления, так как в этом случае происходит значительное изменение объема системы. С увеличением давления растворимость газов увеличивается.

Для смеси газов растворимость каждого из них определяется законом Генри:

Растворимость летучего вещества при постоянной температуре прямо пропорциональна его парциальному давлению над раствором.

Закон справедлив для разбавленных растворов, невысоких давлений и при отсутствии химического взаимодействия с растворителем.



Комментариев нет:

Отправить комментарий