пятница, 18 марта 2022 г.

 СУББОТА 19.03.22 г. 403,405,401,305,206

    ГРУППА 403 БИОЛОГИЯ 57,58

ТЕМА:Происхождение человека. Ближайшие «родственники» человека среди животных. Основные этапы эволюции приматов. Происхождение человека.


Все современные люди принадлежат к одному биологическому виду Homosapiens — человек разумный. Из полутора миллионов видов животных, известных науке, только человеку присущи во всей полноте такие свойства, как сознание, речь, абстрактное мышление. Развитие этих свойств человеческой психики в сочетании с трудовой деятельностью способствовало возрастанию роли социальных отношений в эволюции человека, обеспечивших ему экологическое превосходство над всеми живыми существами, способность заселить практически все регионы Земли и выйти в Космос.

Осознавая свою уникальность, люди издавна пытались объяснить свое происхождение. Эти попытки породили множество легенд, верований и сказаний. Развитие науки, ископаемые останки, обнаруженные за последнее столетие, позволили ответить на многие вопросы, касающиеся происхождения человека. Сегодня известно, как выглядели предки человека, где и когда они впервые появились, в каком направлении эволюционировали. Тем не менее многое в истории возникновения и эволюции человека остается неясным.

Приступая к научному объяснению происхождения человека, следует помнить, что любой биологический вид является по-своему уникальным. Степень уникальности вида определяется тем, насколько сходны с данным видом его ближайшие родственники из числа ныне живущих организмов, тем, какое количество родственных форм вымерло ранее, а также тем, насколько уникальными были процессы, имевшие место в эволюции данного вида.

Молекулярные, цитогенетические и сравнительно-анатомические исследования показывают, что в современной природе наиболее близкими человеку являются два вида шимпанзе. Далее в этой системе родства следуют горилла и орангутан. По критериям зоологической систематики человека и перечисленных человекообразных обезьян относят к отряду приматов.

Данные сравнительной анатомии. Во внешнем облике, в строении и расположении внутренних органов человека и человекообразных обезьян много общего. Имеющиеся анатомические различия между этими организмами менее значительны, чем между человекообразными и остальными обезьянами, и связаны они прежде всего с разницей в способе передвижения.

В связи с прямохождением таз человека превратился в опору для позвоночника, который стал более массивным в своей нижней части и приобрел S-образный изгиб. Большое затылочное отверстие переместилось в нижнюю часть черепа. Изменились пропорции конечностей. Стопа утратила хватательную способность. Кисть, напротив, стала более развитой, чем у обезьян. Вслед за изменениями скелета изменилось положение внутренних органов.

Цитогенетические данные. Диплоидное число хромосом у всех крупных человекообразных обезьян равно 48. У человека диплоидный набор представлен 46 хромосомами. Два плеча второй хромосомы человека соответствуют двум разным хромосомам обезьян (12-й и 13-й у шимпанзе, 13-й и 14-й у гориллы и орангутана). Вторая хромосома человека возникла в ходе эволюции в результате слияния двух негомологичных хромосом, имевшихся у общего предка человека и человекообразных обезьян и сохранившихся у последних вплоть до настоящего времени. Другие различия кариотипов касаются структуры отдельных хромосом и обусловлены главным образом произошедшими инверсиями их участков. 

Данные молекулярной биологии. Последовательности аминокислот многих гомологичных белков человека и шимпанзе сходны более чем на 99%. Следствием этого являются близость групп крови, взаимозаменяемость многих белков (например, гормонов), сходные заболевания.

Важным открытием в области молекулярной биологии явилось установление постоянства скорости эволюции некоторых белков. Говоря об эволюции белка, подразумевают замены одних нуклеотидов на другие в гене, кодирующем этот белок. Скорость эволюции белка выражается в числе нуклеотидных замен, происходящих за единицу времени (млн лет). Если функция белка является очень специфичной и давно сложившейся, то такой белок эволюционирует в разных филогенетических линиях организмов приблизительно с постоянной скоростью. Этот факт позволяет оценить степень родства, а также установить последовательность и время дивергенции биологических видов. Примером таких белков служат белки — переносчики электронов в митохондриях.

Данные биологии развития. У детенышей шимпанзе есть признаки, свойственные человеку. С возрастом эти признаки у шимпанзе утрачиваются. Как и у людей, у детенышей шимпанзе тело покрыто редкими волосами. У них относительно крупный мозг (в сравнении с массой тела), защищенный выпуклым черепом. Кости черепа тонкие, не имеют сильно выраженных надглазничных валиков и затылочных гребней. Челюсти в меньшей степени выступают вперед, зубы небольшие. Затылочное отверстие расположено под средней частью черепа. Детеныши шимпанзе в возрасте до 3 лет способны гораздо лучше передвигаться на задних конечностях, чем взрослые особи.

Дивергенция человека и человекообразных обезьян на молекулярном и хромосомном уровнях выражена очень слабо. Если руководствоваться только молекулярно-биологическими и цитогенетическими данными, то человека и шимпанзе можно считать представителями одного рода. Тем не менее, огромные различия в поведении и деятельности, а также существующие морфологические различия заставили систематиков отнести человека и человекообразных обезьян не только к разным родам, но и к разным семействам. По-видимому, за те примерно 6—8 млн лет, которые прошли с момента дивергенции этих видов, человек эволюционировал чрезвычайно быстро в отношении морфологии и поведения, тогда как его молекулярная эволюция шла обычными темпами.

Антропогенез – наука, которая изучает основные этапы эволюции человека. Согласно

 палеонтологическим данным, 

примерно 30-35 млн лет назад от примитивных древних насекомоядных млекопитающих 

отделилась группа, от которых произошли приматы.

От приматов отделилась одна ветвь, от которой произошли предки человекообразных 

обезьян – парапитеки.

Эти небольшие группы животных вели древесный образ жизни, питались насекомыми и 

растениями. В дальнейшем от парапитеков произошли гиббоны и орангутанги, а также вымершая

 ветвь древесных обезьян – дриопитеки.

Примерно 25 миллионов лет назад произошло значительное изменение в человеческом роду.

 Дриопитеки разделились на две абсолютно независимые ветви, которые и стали 

основополагающими для такого понятия как основные этапы эволюции человека.

Одна ветвь (понгиды) осталась жить на деревьях, а вторая (гоминиды) спустилась на землю.

В развитии гоминид выделяют пять основных этапов.

Первый из них – стадия протантропа, которая проходила примерно 9 миллионов лет назад.

 В это время выделяется особая группа прямоходячих – австралопитеки. Они стали основной 

переходной формой от обезьян к человеку.

В это же время австралопитеки начинают активно осваивать первые орудия труда, которыми

 становятся обычные палки, кости убитых животных и камни. Все больше и больше предков 

человека объединяются в стада.

Вторая стадия – человек умелый. Это первая стадия формирования типа современного человека. 

Проходила она примерно 2-2,5 миллиона лет назад. Постепенно увеличивается объем мозга и

 подвижность всего тела.

Развиваются лицевые мышцы и формируется современное лицо, с меньшим количеством 

обезьяноподобных гримас. Вместе с ростом мозговой деятельности развивается и культура 

выращивания зерновых. Для этого изготавливаются орудия труда.

Дальше идет эра питекантропа. Основным показателем этой эры считается разделение людей 

на большие стада и заселение континентов. Были освоены Африка, Китай и Европа. Именно в 

этот период (1-1,3 миллиона лет тому назад) был освоен огонь. Объем мозга увеличивается до 

1200 см3, что приводит к формированию речи.

Четвертая стадия – неандерталец. Объем мозга практически не меняется, но зато активно

 развивается его деятельность. Орудие труда изготавливаются на достаточно высоком уровне,

 развиваются разные виды речи. Появляются отдельные семьи. Этот период проходит между 

200 и 500 тысячами лет назад.

Последней стадией развития человека стал кроманьонец. В этот период (40-50 тысяч лет назад)

 окончательно формируется облик современного человека. Появляется структура современного

 общества и происходит одомашнивание животных.




Человеческая жизнь на Земле появилась приблизительно 3,2 млн. лет назад. До сих пор человечеству не известно достоверно, каким образом зародилась человеческая жизнь. Существует ряд теорий, которые предоставляют свои варианты происхождения человека.
Самые известные из этих теорий - это религиозная, биологическая и космическая. Существует также археологическая периодизация жизни древних людей, которая основывается на том, из какого материала в разное время производились орудия труда.

Эпоха Палеолита - появление первого человека
Появления человека связывают с эпохой Палеолита – каменного века (от греческого « палеос» - древний, «литос» - камень). Первые люди жили небольшими стадами, их хозяйственная деятельность заключалась в собирательстве и охоте. Единственным орудием труда было каменное рубило. Язык заменяла жестикуляция, человек руководился исключительно собственными инстинктами самосохранения и во многом был похож на животное. 

В эпоху Позднего Палеолита завершилось умственное и физическое формирование современного человека, лат. Homo sapiens, человека разумного.

Особенности человека разумного: анатомия, речь, орудия труда
Человек разумный отличается от своих предшественников умением абстрактно мыслить и выражать свои мысли в членораздельной речевой форме. Человек разумный научился строить первые, хотя и достаточно примитивные жилища.

Первобытный человек имел ряд анатомических отличий от человека разумного. Мозговая часть черепа была значительно меньше по сравнению с лицевой. Так как человек разумный был более умственно развитым, его строение черепа абсолютно меняется: лицевая часть уменьшается, появляется плоский лоб, появляется подбородочный выступ. Руки человека разумного значительно укорачиваются: ведь ему больше не нужно заниматься собирательством, на смену ему приходит земледелие.

Человек разумный значительно совершенствует орудия труда, их уже существует более 100 видов. На смену первобытному стаду уже приходит сформированная родовая община: Homo sapiens четко определяет своих родственников среди множества людей. Благодаря умению анализировать, он начинает наполнять окружающие объекты и явления духовным смыслом – так зарождаются первые религиозные верования.

Человек разумный уже не так сильно зависит от природы: на смену охоты приходит скотоводство, он может также самостоятельно выращивать овощи и фрукты, не прибегая к собирательству. Благодаря тому, что человек смог приспособится к окружающей среде и бороться со стихийными бедствиями, его средний показатель жизни увеличивается примерно на 5 лет.

Позже, с усовершенствованием орудий труда, человек разумный создаст классовое общество, которое говорит, прежде всего, о материальном превосходстве и умении создавать личное имущество. Человеку разумному присуща вера в духи умерших предков, которые якобы помогают и покровительствуют ему. 

Смотря на эволюционное развитие человечества, душу охватывает восхищение его силой воли и умением бороться с различными препятствиями на своем пути. Благодаря чему, человек смог не только выйти из пещеры, но и самостоятельно строить современные небоскребы, реализовываться в науке и искусстве, полностью подчинив себе природу. 


ГРУППА 405 БИОЛОГИЯ 23,24

ТЕМА: Моногибридное скрещивание. Первый и второй законы Менделя. Генотип и фенотип .

«Моногибридное скрещивание. Первый и второй закон Менделя. Генетическая символика и терминология

3. Перечень вопросов, рассматриваемых в теме;

Этот урок раскрывает основные закономерности наследования признаков от родителей к потомству. От брака кареглазой женщины и кареглазого мужчины родилась голубоглазая девочка. Возможно ли это? На этот и многие другие вопросы отвечает наука генетика..

4.  Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Ген, аллель, хромосомы, гомозиготный, гетерозиготный, доминантный признак, рецессивный признак, моногибридное скрещивание, гибрид.

Аллельные гены- гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха)

Альтернативные признаки - взаимоисключающие, контрастные признаки (окраска семян гороха желтая и зеленая).

Анализирующее скрещивание- скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого. Применяется в селекции растений и животных.

Гамета - (от греч. "гаметес" - супруг) - половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в "чистом" виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.

Генетика (от греч. "генезис" - происхождение) - наука о закономерностях наследственности и изменчивости организмов.

Ген (от греч. "генос"-рождение) -участок молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка.

Генотип  совокупность генов одного организма.

Гетерозигота (от греч. "гетерос" - другой и зигота) - зигота, имеющая два разных аллеля по данному гену (Аа, Вb).Гетерозиготная особь в потомстве дает расщепление по данному признаку.

Гомологичные хромосомы (от греч. "гомос" - одинаковый) - парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный:одна хромосома из пары материнского происхождения, другая - отцовского.

Гомозигота (от греч. "гомос" - одинаковый и зигота) зигота, имеющая одинаковые аллели данного гена (оба доминантные АА или оба рецессивные аа). Гомозиготная особь в потомстве не дает расщепления.

Доминантный признак (от лат. "едоминас" - господствующий) - преобладающий признак, проявляющийся в потомстве у
гетерозиготных особей.

Моногибридное скрещивание-скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

Признак рецессивный  (от лат. "рецессус" - отступление) признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.

Фенотип - совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой обитания.

5.   Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

Учебник «Биология.10-11класс», созданный под редакцией академика Д.К.Беляева и профессора Г.М.Дымшица / авт.-сост. Г.М. Дымшиц и О.В.Саблина.- М.: Просвещение, 2018г., стр.96-102

Дополнительные источники:

1.А.А.Кириленко «ЕГЭ. Биология. Раздел «Генетика» , Учебно - методическое пособие.- Ростов н/Д: Легион, 2009г. С 125-179

2.А.Скворцов, А.Никишов, В. Рохлов. Универсальное учебное пособие. Биология, 6-11 классы
Школьный курс. М. «АСТ - Пресс», 2000 г. стр. 394-395

3.О.Л.Ващенко "Биология. Интерактивные дидактические материалы. 6-11 классы (+CDpc)

6. Открытые электронные ресурсы по теме урока (при наличии);

Интернет-ресурсы:

  • Образовательный портал для подготовки к экзаменам https://bio-ege.sdamgia.ru/?redir=1
  • Российский общеобразовательный Портал www.school.edu.ru

7. Теоретический материал для самостоятельного изучения;

Моногибридное скрещивание – это скрещивание, для которого характерным является отличие родительских форм друг от друга по имеющейся одной паре альтернативных, контрастных признаков. Признаком называют любую особенность организма, любое его свойство либо качество, по которому возможно различить особи.

У растений таким свойством является, например, форма венчика (асимметричный или симметричный), его окраска (белый или пурпурный) и т. д. К признакам относят также скорость созревания (позднеспелость либо скороспелость), а также стойкость либо восприимчивость к тем или иным заболеваниям. Все свойства в совокупности, начиная с внешних и заканчивая определенными особенностями в функционировании или структуре клеток, органов, тканей, называются фенотипом. Данное понятие может быть использовано и по отношению к одному из имеющихся альтернативных признаков. Проявление свойств и признаков осуществляется под контролем существующих наследственных факторов – другими словами, генов. В совокупности гены формируют генотип.

Моногибридное скрещивание по Менделю представлено скрещиванием гороха. При этом имеют место такие достаточно хорошо заметные альтернативные свойства, как белые и пурпурные цветки, зеленая и желтая окраска незрелых бобов, морщинистая и гладкая поверхность семян и прочие. Проводя моногибридное скрещивание, Г. Мендель, австрийский ботаник Х I Х в., выяснил, что в первом поколении (F1) все гибридные растения обладали цветками пурпурного оттенка, белая же окраска не проявилась. Так был выведен первый закон Менделя о единообразии образцов первого поколения. Кроме того, ученый установил, что в первом поколении все образцы являлись однородными и по всем семи исследуемым им признакам. Таким образом, моногибридное скрещивание предполагает для особей первого поколения наличие альтернативных признаков только одного родителя, в то время как свойства другого родителя как бы исчезают. Преобладание свойств Г. Мендель назвал доминированием, а сами признаки – доминантными. Не проявляющиеся качества ученый назвал рецессивными.

Проводя моногибридное скрещивание, Г. Мендель подверг самоопылению выращенные гибриды первого поколения. Сформировавшиеся в них семена ученый высеял снова. В итоге он получил следующее, второе поколение (F2) гибридов. В полученных образцах отмечалось расщепление по альтернативным признакам в примерном соотношении 3:1. Другими словами, три четверти особей второго поколения имели доминантные свойства, а одна четверть – рецессивные. В результате этих опытов Г. Мендель сделал вывод, что рецессивный признак в образцах был подавлен, но не исчез, проявившись во втором поколении. Данное обобщение получило название «Закон расщепления» (второй закон Менделя).

Дальнейшее моногибридное скрещивание ученый проводил с целью выявить, как будет происходить наследование в третьем, четвертом и следующих поколениях. Он выращивал образцы, используя самоопыление. В результате опытов было выявлено, что растения, признаки которых являются рецессивными (белые цветки, к примеру), в последующих поколениях осуществляют воспроизведение потомства только с этими (рецессивными) свойствами. Несколько по-другому повели себя растения второго поколения, свойства которых были названы Г. Менделем доминантными (обладатели, например, пурпурных цветков). Среди этих образцов ученый, анализируя потомство, выявил две группы, имеющие абсолютные внешние различия по каждому определенному признаку. Для особей, отличающихся по двум признакам, применяется дигибридное скрещивание. Задачи по определению генотипов и фенотипов сравнительно просты, при их решении применяются законы Менделя.

  1. Генетика - это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы
  2. Опыты Г. Менделя показали, что есть наследственные задатки (гены), которые организм передает из поколения в поколения. Гены определяют признак.
  3. Закон единообразия гибридов первого поколения, которое утверждает, что в первом поколении гибридов проявляется только доминантный признак
  4. Закон расщепления, который гласит, что в потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения (F2) имеет рецессивный признак, три четверти — доминантный. Для объяснения полученного расщепления Мендель предложил гипотезу чистоты гамет, согласно которой при образовании гибридов наследственные факторы (аллельные гены) не смешиваются, а сохраняются в неизменном виде, т. е. гибрид имеет оба фактора — доминантный и рецессивный. Гибрид дает разные виды «чистых» гамет, несущих только один наследственный фактор из пары. Случайное слияние разных видов гамет приводит к появлению разных комбинаций наследственных факторов у гибридов F2 и расщеплению признаков у них.
  5. Открытые Г. Менделем законы универсальны, они приемлемы для животных, растений и для человека.
  6. Законы Г.Менделя являются научной основой для селекции. Закономерности наследования имеют большое значение в области генетики человека, поскольку многие наследственные заболевания наследуются по законам Г. Менделя.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Найдите и выделите цветом по вертикали и горизонтали в филворде

  1. Половые клетки
  2. Организм полученный вследствие скрещивания генетически различающихся форм.
  3. Скрещивание особей с альтернативными признаками;
  4. Участок ДНК
  5. Наука о закономерностях наследственности и изменчивости
  6. Скрещивание позволяющее определить генотип организма
  7. Преобладание признака
  8. Признак, который не проявляет себя, если в генотипе есть доминантный аллель того же признака. –
  9. Различные формы одного и того же гена

Тип вариантов ответов: (Текстовые,Графические, Комбинированные):

Правильный вариант:

Гаметы, гибрид, гибридизация, ген, генетика, анализирующее, доминанта, рецессивный, аллель.


Задание 2.

Вставьте пропущенные слова.

Дано: гетерозиготный темноволосый отец и мать блондинка.

Следовательно, доминирует ген ….,а рецессивен ген ….

Дано: в потомстве кота Васьки и пяти черных кошек были черные и серые котята, причем серых было в три раза больше.

Следовательно, доминирует ген .., рецессивен ген …, а кот Васька …по данному признаку

Тип вариантов ответов: (Текстовые,Графические, Комбинированные):

Правильный вариант:

Дано: гетерозиготный темноволосый отец и мать блондинка.

Следовательно, доминирует ген тёмных волос,а рецессивен ген светлых волос.

Дано: в потомстве кота Васьки и пяти черных кошек были черные и серые котята, причем серых было в три раза больше.

Следовательно, доминирует ген серого цвета, рецессивный ген чёрного, а кот Васька гетерозиготный по данному признаку

ТЕМА: Дигибридное скрещивание. Третий закон Менделя. Ъ

Законы Менделя кратко и понятно

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.


В 19 веке австрийский ботаник и биолог Грегор Иоганн Мендель проводил исследования посевного гороха. Он смог установить, как передаются признаки по наследству. Это исследование выявило три закономерности, которые получили название «Законы Менделя».

Открытие Менделя заложило основу генетики, науки изучающей вопросы наследования и изменения особенностей организмов. Она сгорала большую роль в развитии различных сфер человеческой деятельности.

 

 






 

Содержание:

  1. Закон единообразия

  2. Закон расщепления

  3. Закон независимого наследования признаков

  4. Заключение

ЗАКОН ЕДИНООБРАЗИЯ

Порядок проведения эксперимента

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результат

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

ЗАКОН РАСЩЕПЛЕНИЯ

Порядок проведения эксперимента

Для следующего этапа исследования использовался только горох первого поколения. Мендель высадил его и оставил без вмешательства, чтобы горох мог самостоятельно опылиться. Это позволило появиться растениям второго поколения «F2».

Результат


Из-за самостоятельного опыления появились семена желтого и зелёного цвета. А поскольку жёлтый цвет является доминантным признаком, то соотношение семян желтого цвета к зеленому составило 3 к 1.

Разделение, а точнее расщепление родительского типа на два различных, дало название второму закону.

Данный опыт помог установить, что признак одного из родителей (зеленый цвет) не исчез полностью, а просто неактивен или подавлен. За него отвечал тот же ген, что и за желтый цвет, за который отвечала часть гена – доминантный аллель. Желтый цвет в себе содержала рецессивная аллель – «а», подавляемая доминантной «А».

Поэтому строение растений:

  • зеленый горох-родитель – две рецессивных аллели «аа»;

  • желтый горох-родитель – две доминантных аллели «АА»;

  • желтый горох первого поколения – одна доминантная и одна рецессивная аллели «Аа»;

  • желтый горох второго поколения – он может содержать следующие аллели: «АА», «Аа», «аА». В них цвет обуславливается наличием доминанта;

  • зеленый горох второго поколения – две рецессивных аллели «аа».

ТРЕТИЙ ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ

Порядок проведения эксперимента

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

  • желтый цвет и гладкие семена;

  • желтый цвет и ребристые семена;

  • зеленый цвет и гладкие семена;

  • зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

Таким образом строение растений:

  • зеленый горох-родитель с ребристыми семенами – «аа» и «bb»;

  • желтый горох-родитель с гладкими семенами – «АА» и «BB»;

  • желтый горох первого поколения с гладкими семенами – «Аа» и «Bb»;

  • желтый горох второго поколения с гладкими семенами – «АА», «Аа», «аА» в сочетании с «BB», «Bb», «bB».

  • желтый горох второго поколения с ребристыми семенами – «АА», «Аа», «аА» и «bb»

  • зеленый горох второго поколения с гладкими семенами – «аа» в сочетании с «BB», «Bb», «bB»;

  • зеленый горох второго поколения с ребристыми семенами «аа» и «bb».

Таким образом соотношение цветов и гладкости: 9-3-3-1.

ЗАКЛЮЧЕНИЕ

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

Материал взят с сайта https://nauka.club

ЗАПИШИТЕ КРАТКО ЗАКОНЫ:
Первый закон Менделя (закон единообразия
)
: В первом поколении все гибриды одинаковы, похожи на одного из родителей.
Второй закон Менделя (закон расщепления): При скрещивание гетерозиготных гибридов первого поколения происходит расщепление признаков в соотношении 3:1.
Третий закон Менделя (закон независимого наследования признаков):  При дигибридном скрещивании расщепление по каждой паре признаков идет независимо от других признаков.
Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре изучаемых  признаков, за которые отвечают аллели одного гена.
Дигибридное скрещивание — скрещивание организмов, различающихся по двум парам альтернативных признак

ГРУППА 401 БИОЛОГИЯ 28

ТЕМА:Модификационная, комбинативная, мутационная изменчивость.

Формы изменчивости

Изменчивость – это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

ТАБЛИЦА Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Формы изменчивостиПричины появленияЗначениеПримеры
Ненаследственная модификационная (фенотипическая)Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипомАдаптация – приспособление к данным условиям среды, выживание, сохранение потомстваБелокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми
Наследственная (генотипическая)
Мутационная
Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомахМатериал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивныеПоявление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов – микроэволюции
Наследственная (генотипическая)
Комбинатнвная
Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации геновРаспространение в популяции новых наследственных изменений, которые служат материалом для отбораПоявление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Наследственная (генотипическая)
Соотносительная (коррелятивная)
Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаковПостоянство взаимосвязанных признаков, целостность организма как системыДлинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак – жирность молока – слабо подвержен изменениям условий среды, а масть животного – еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.

Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Свойства мутаций:

1. Мутации возникают внезапно, скачкообразно.
2. Мутации наследственны, т. е. стойко передаются из поколения в поколение.
3. Мутации ненаправденны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.
4. Одни и те же мутации могут возникать повторно.
5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: 1) при кроссинговере, во время профазы первого мейотического деления; 2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления; 3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления и 4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

Таблица . Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

ХарактеристикаМодификационная изменчивостьМутационная изменчивость
Объект измененияФенотип в пределах нормы реакцииГенотип
Отбирающий факторИзменение условий окружающей
среды
Изменение условий окружающей среды
Наследование при
знаков
Не наследуютсяНаследуются
Подверженность изменениям хромосомНе подвергаютсяПодвергаются при хромосомной мутации
Подверженность изменениям молекул ДНКНе подвергаютсяПодвергаются в случае
генной мутации
Значение для особиПовышает или
понижает жизнеспособность. продуктивность, адаптацию
Полезные изменения
приводят к победе в борьбе за существование,
вредные – к гибели
Значение для видаСпособствует
выживанию
Приводит к образованию новых популяций, видов и т. д. в результате дивергенции
Роль в эволюцииПриспособление
организмов к условиям среды
Материал для естественного отбора
Форма изменчивостиОпределенная
(групповая)
Неопределенная (индивидуальная), комбинативная
Подчиненность закономерностиСтатистическая
закономерность
вариационных рядов
Закон гомологических
рядов наследственной изменчивости

Тема:Наследственная изменчивость человека. Лечение и предупреждение некоторых наследственных болезней человека.

Мутационная изменчивость (мутации) — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

Термин «мутация» введен в науку Де Фризом. Им же создана мутационная теория, основные положения которой не утратили своего значения и по сей день.

Основные положения мутационной теории

1. Мутации возникают внезапно, скачкообразно, без всяких переходов.

2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.

3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.

4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.

5. Одни и те же мутации могут возникать повторно.

6. Мутации индивидуальны, то есть возникают у отдельных особей.

 

Процесс возникновения мутаций называют мутагенезом, а факторы среды, вызывающие появление мутаций, — мутагенами.

По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

По адаптивному значению выделяют: полезные, вредные (летальные, полулетальные) и нейтральные мутации. Полезные — повышают жизнеспособность, летальные — вызывают гибель, полулетальные — снижают жизнеспособность, нейтральные — не влияют на жизнеспособность особей. Следует отметить, что одна и та же мутация в одних условиях может быть полезной, а в других — вредной.

 

По характеру проявления мутации могут быть доминантными и рецессивными. Если доминантная мутация является вредной, то она может вызвать гибель ее обладателя на ранних этапах онтогенеза. Рецессивные мутации не проявляются у гетерозигот, поэтому длительное время сохраняются в популяции в «скрытом» состоянии и образуют резерв наследственной изменчивости. При изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование.

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно.


В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате:

1) замены одного или нескольких нуклеотидов на другие;

2) вставки нуклеотидов;

3) потери нуклеотидов;

4) удвоения нуклеотидов;

5) изменения порядка чередования нуклеотидов.

Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы. Благодаря генным мутациям возникают множественные аллели одного и того же гена.

Заболевания, причиной которых являются генные мутации, называются генными (фенилкетонурия, серповидноклеточная анемия, гемофилия и т.д.). Наследование генных болезней подчиняется законам Менделя.

Хромосомные мутации

Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — межхромосомные мутации

 

Хромосомные мутации: 1 — парахромосом; 2 — делеция; 3 — дупликация; 4, 5 — инверсия; 6 — инсерция.

 

Заболевания, причиной которых являются хромосомные мутации, относятся к категории хромосомных болезней. К таким заболеваниям относятся синдром «крика кошки», транслокационный вариант синдрома Дауна и др.

 

Геномные мутации

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n), тетраплоиды (4n) и т.д.

Гетероплоидия — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Лечение наследственных аномалий обмена веществ. Повышенный интерес медицинской генетики к наследственным заболеваниям объясняется тем, что во многих случаях знание биохимических механизмов развития заболевания позволяет облегчить страдания больного. Больному вводят несинтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут быть использованы вследствие отсутствия в организме необходимых для этого ферментов. Заболевание сахарным диабетом характеризуется повышением концентрации сахара в крови вследствие отсутствия инсулина — гормона поджелудочной железы. Это заболевание вызывается рецессивной мутацией. Оно лечится введением в организм инсулина.

Однако следует помнить, что излечивается только болезнь, т. е. фенотипическое проявление вредного гена, и вылеченный человек продолжает оставаться его носителем и может передавать этот ген своим потомкам. Сейчас известны более ста заболеваний, в которых механизмы биохимических нарушений изучены достаточно подробно. В некоторых случаях современные методы микроанализов позволяют обнаружить такие биохимические нарушения даже в отдельных клетках, а это, в свою очередь, позволяет ставить диагноз о наличии подобных заболеваний у еще не родившегося ребенка по отдельным его клеткам, плавающим в околоплодной жидкости беременной женщины.

Нежелательность родственных браков. В современном обществе родственные браки (браки между двоюродными братьями и сестрами) сравнительно редки. Однако есть области, где в силу географических, социальных, экономических или других причин небольшие контингенты населения в течение многих поколений живут изолированно. В таких изолированных популяциях (так называемых изолятах) частота родственных браков по понятным причинам бывает значительно выше, чем в обычных «открытых» популяциях. Статистика свидетельствует, что у родителей, состоящих в родстве, вероятность рождения детей, пораженных теми или иными наследственными недугами, или частота ранней детской смертности в десятки, а иногда даже в сотни раз выше, чем в неродственных браках. Родственные браки особенно нежелательны, когда имеется вероятность гетерозиготности супругов по одному и тому же рецессивному вредному гену.

ГРУППА 305 ХИМИЯ 4

ТЕМА: Основные законы химии. Стехиометрия. Закон сохранения массы веществ. Закон постоянства состава веществ молекулярной структуры.

Основные законы химии. Стехиометрия. Закон сохранения массы веществ. Закон постоянства состава веществ молекулярной структуры. Закон Авогадро и следствия их него.

Законы стехиометрии



Основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией. Стехиометрия включает в себя законы Авогадро, постоянства состава, кратных отношений, Гей-Люссака, эквивалентов и сохранения массы.

В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы (М. В. Ломоносов, 1748, А. Лавуазье, 1789).

Закон сохранения массы веществ : Масса реагирующих веществ равна массе продуктов реакции.

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст): Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.

Закон кратных отношений (Д. Дальтон): Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

При взаимодействии азота с кислородом образуются пять оксидов. На 1 грамм азота в образующихся молекулах приходится 0,57, 1,14, 1,71, 2,28, 2,85 грамм кислорода, что соответствует отношением 2:1, 1:1, 2:3, 1:2, 2:5 в этих оксидах; их составы N 2O, NO, N 2O 3, NO 2, N 2O 5.

Закон эквивалентов (И. Рихтер): В молекулярных соединениях массы составляющих их элементов относятся между собой как их эквиваленты.

Закон Авогадро : В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.

Из закона Авогадро вытекают два следствия:

  • Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем.
     
  • Относительная плотность одного газа по другому равна отношению их молярных масс.

Число Авогадро – число частиц в моле любого вещества; N A = 6,02∙10 23 моль –1.

Молярный объем – объем моля любого газа при нормальных условиях; равен 22,4 л∙моль –1.

Молярная масса (M) – масса одного моля вещества, численно совпадающая с относительными массами атомов, ионов, молекул, радикалов и других частиц, выраженных в г∙моль –1.

ГРУППА 206 БИОЛОГИЯ  65,66

ТЕМА: Экологическая ниша и межвидовые отношения

П.р. №1 «Составление схем переноса веществ и энергии в экосистемах (пищевых цепей и сетей).

Сообщества и экосистемы.

ТЕМА: Экологическая ниша и межвидовые отношения

П.р. №1 «Составление схем переноса веществ и энергии в экосистемах (пищевых цепей и сетей).

ТЕМА:Экологическая ниша и межвидовые отношения. ПРАКТИЧЕСКАЯ РАБОТА "СОСТАВЛЕНИЕ СХЕМ ПЕРЕНОСА ВЕЩЕСТВ И ЭНЕРГИИ В ЭКОСИСТЕМАХ (ПИЩЕВЫХ ЦЕПЕЙ И СЕТЕЙ)".

Экологическая ниша-место, занимаемое видом (точнее — его популяцией) в сообществе (биоценозе), комплекс его биоценотических связей и требований к абиотическим факторам ср. Введен в 1927 году Чарльзом Элтоном. Эколог ниша представляет собой сумму факто­ров сущ-ния данного вида, основным из кот явл его место в пищ цепочке. Эколог ниша может быть: фундаментальной-определяемой соче­танием усл и ресурсов, позволяющим виду поддерживать жизнеспособную популя­цию;реализованной-св-ва кот обусловлены конкурирующими видами. Разнообразные формы биотических отношений, в кот вступают те или иные виды в биоценозе (конкуренция, комменсализм, мутуализм, хищник-жертва и др.), определяют основные усл их жизни в сооб-ве, возможности добывания пищи и за­воевания нового пространства.

Прямые и косвенные межвидовые отношения подразделяются на 4типа: 1 Трофические связи набл-ся, когда 1-н вид питается другим либо их мертвыми остатками, или продуктами их жиз­нед-ти, При конкуренции 2-х видов за объект питания возникает косвенная трофическая связь, вследствие того что д-ть 1-го отражается на снабжении кормом другого(гусеницы бабо­чек-монашенок, объедая хвою сосен, облег­чают короедам доступ к ослабленным де­ревьям).2.Топические связи харак-ют любое физич или химич изменение усл обитания 1-го вида в рез-те жизнед-ти другого. Заключается в создании 1-м видом ср для другого, в форми­ровании субстрата, на кот поселяются или избегают поселяться представители других видов. Напр, лишайники на стволах деревьев связаны прямой топической связью с организ­мами, представляющими им субстрат или ср обитания. В рез-те положительных или отрица­тельных топических взаимоотношений 1-ни виды определяют или исключают возможность существования в биоценозе других видов. В биоценозе трофич и топич связи имеют наи­большее значение, составляют основу его существования. 3. Форические связи- участие 1-го вида в распространении другого. В роли транспортировщиков выступают живот­ные(перенос животными семян, спор, пыльцы растений-зоохория; перенос более мелких жив- форезия).Перенос осущ-ся с помощью спец и разнообразных приспособлений. Форе­зия животных преимущественно распростра­нена среди мелких членистоногих.Так, многие летающие насекомые-посетители скоплений быстро разлагающихся органических остатков (трупов, животных, куч гниющих растений) несут на себе клещей, переселяющихся данным способом от одного скопления пищ материалов к другому. 4.Фабрические связи – это такой тип биоценотических отношений, в которые вступает вид, использующий для своих сооружений (фабрикаций) продукты выделения, либо мертвые остатки, либо даже живых особей другого вида. Так, птицы употребляют для постройки гнезд ветви деревьев, шерсть млекопитающих, траву, листья, пух и перья других видов птиц и т. п. Личинки ручейников строят домики из кусочков веток, коры или листьев растений, из раковин мелких видов катушек, захватывая даже раковинки с живыми моллюсками.


Лабораторная  работа


«Составление  схем передачи веществ и энергии (цепей  питания), трофических сетей,


построение пирамид биомассы»


Цель: (сформулируйте самостоятельно)


Ход работы.


1.Назовите организмы, которые должны быть на пропущенном месте следующих  пищевых   цепей.


Запишите эти цепи.


2. Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

Пример пищевой сети


3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой   цепи  (задание 1). Биомасса растений составляет 40 тонн.


Вывод: (при составлении вывода работы опишите, что отражают правила экологических пирамид).


Эко­ло­ги­че­ские пи­ра­ми­ды — это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.



 

Различают три типа экологических пирамид: энергии, биомассы и численности.

 

О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах».

Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Принцип построения экологических пирамид

Основание пирамиды образуют продуценты (растения).

Над ними располагаются консументы первого порядка (травоядные).

Следующий уровень представляют консументы второго порядка (хищники).

И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи.



Пирамида биомасс (1) показывает соотношение биомасс организмов разных трофических уровней, изображённых графически таким образом, что длина или площадь прямоугольника, соответствующего определённому трофическому уровню, пропорциональна его биомассе.

В любой трофической цепи не вся пища используется на рост особи, т. е. на формирование биомассы (часть её расходуется на удовлетворение энергетических затрат организмов: дыхание, движение, размножение, поддержание температуры тела и т. д.). Следовательно, в каждом последующем звене пищевой цепи происходит уменьшение биомассы.

Правило экологической пирамиды биомасс отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Пирамида численности, или чисел (2) — отображение числа особей на каждом из трофических уровней данной экосистемы.

Пирамиды чисел отражают только плотность населения организмов на каждом трофическом уровне, но не скорость самовозобновления (оборота) организмов.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения.

По этой причине пирамиды численности могут быть перевёрнутыми, т. е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне.

Например, на одном дереве может жить и кормиться множество насекомых (перевёрнутая пирамида численности).


Перевёрнутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.


 

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы.

Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т. е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

 

Обрати внимание!

Из трёх типов экологических пирамид пирамида энергии даёт наиболее полное представление о функциональной организованности сообществ, так как отражает картину скоростей прохождения массы пищи через пищевую цепь.

 




Комментариев нет:

Отправить комментарий