СПРАВА НАХОДИТСЯ АРХИВ БЛОГА-СМОТРИТЕ ДАТУ И СВОИ УРОКИ
РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 20.02.23г. - 22.02.23г.
Пн.20.02: 306, 401, 401, 408
Вт. 21.02: 508, 505, 505, 501
Ср. 22.02: 406, 505, 401, 505(замена)
Чт. 23.02:выходной
Пт. 24.02: выходной
Здравствуйте, уважаемые студенты, записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com Тетрадь привезете, когда перейдем на очную форму обучения.)Справа находится АХИВ БЛОГА , смотрите дату и номер своей группы.
Моя почта : rimma.lu@gmail.com Жду ваши фотоотчеты!
ГРУППА 406 ХИМИЯ 51, 52
ТЕМА 51 :
Практическая работа №3
Решение экспериментальных задач на идентификацию органических соединений. Распознавание пластмасс и волокон.
Реактивы и оборудование: раствор KMnO4(розовый), Аммиачный раствор оксида серебра – реактив Толленса[Ag(NH3)2]OH (упрощённо +Ag2O NH3 раствор→), раствор FeCl3(светло-жёлтый), свежеосаждённый гидроксид меди (II) в сильнощелочной среде, лакмус, фенолфталеин, насыщенный раствор соли кальция.
Литература: Г.Е.Рудзитис, Ф.Г.Фельдман, химия 10 класс, стр.149
С правилами по технике безопасности ознакомлен:______________________(подпись)
Ход работы:
Оформить работу в виде отчетной таблицы.
Отчетная таблица
Что делали | Что наблюдали | Уравнения реакций | Выводы |
|
|
|
|
|
|
|
1.Распознавание уксусной кислоты (уксусная кислота –одна из самых древних кислот ,которую удалось выделить и использовать человечеству. В организме человека за сутки образуется до 400 грамм этой кислоты)
СuSО4 + 2NаОН → | Сu(ОН)2 ↓ | + Nа2SО4 |
голубой осадок |
2СН3 – СООН + Сu(ОН)2 → (СН3 – СОО)2Сu + Н2О
Получить свежеосажденный гидроксид меди. Прилить к нему 1 – 2 мл этанола. Голубой осадок растворяется, образуя раствор такого же цвета.
2. Распознавание глюкозы
СuSО4 + 2NаОН → | Сu(ОН)2 ↓ | + Nа2SО4 |
голубой осадок |
СН2ОН – (СНОН)4 – СНО + 2Сu(ОН)2 СН2ОН – (СНОН)4 – СООН + Сu2О↓ +2Н2О
К 1 – 2 мл глюкозы прилить свежеосажденный гидроксид меди. Сначала осадок растворяется, затем при нагревании раствор приобретает окраску от красной до желто – оранжевой. Это свидетельствует о наличии в исследуемой жидкости глюкозы.
3. Распознавание глицерина(глицерин входит в состав мазей, в пищевой промышленности глицерин под кодом Е-422).
2СН2ОН – СНОН – СН2ОН + Сu(ОН)2 → глицерат меди (II) + 2Н2О
К 2 мл глицерина прилить свежеосажденный гидроксид меди. Раствор окрашивается в ярко – синий цвет в результате образования комплексного соединения глицерата меди (II).
4. Распознавание сахарозы. Сахар-сложное орган.в-во, содержащее много С. Чтобы доказать возьмем немного сахара и добавим к нему серную кислоту. Она забирает воду, получается свободный углерод(черное в-во) С12Н22О11-----серн.к-та------------12С+11Н2О
5.Распознавание крахмала. Капнем р-ром иода на картофель и белый хлеб. Если образуется синее пятно, то они содержат крахмал.
6. Определение кислотности р-ров глицерина и мыла с помощью имеющихся индикаторов.
(лакмус, фенолфталеин,метилоранж). Глицерин имеет слабокислую среду, а мыло-щелочную.
Общий вывод(на основе цели)!
(((
1. Распознавание уксусной кислоты (уксусная кислота – одна из самых древних кислот, которую удалось выделить и использовать человечеству. В организме человека за сутки образуется до 400 грамм этой кислоты) СuSО4 + 2NаОН →Сu(ОН)2 ↓+ Nа2SО4
2СН3 – СООН + Сu(ОН)2 → (СН3 – СОО)2Сu + Н2О
Получить свежеосажденный гидроксид меди. Прилить к нему 1 – 2 мл этанола. Голубой осадок растворяется, образуя раствор такого же цвета.
2. Распознавание глюкозы
СuSО4 + 2NаОН → Сu(ОН)2 ↓ + Nа2SО4
СН2ОН – (СНОН)4 – СНО + 2Сu(ОН)2 СН2ОН – (СНОН)4 – СООН + Сu2О↓ +2Н2О
К 1 – 2 мл глюкозы прилить свежеосажденный гидроксид меди. Сначала осадок растворяется, затем при нагревании раствор приобретает окраску от красной до желто – оранжевой. Это свидетельствует о наличии в исследуемой жидкости глюкозы.
3. Распознавание глицерина (глицерин входит в состав мазей, в пищевой промышленности глицерин под кодом Е-422).
2СН2ОН – СНОН – СН2ОН + Сu(ОН)2 → глицерат меди (II) + 2Н2О
К 2 мл глицерина прилить свежеосажденный гидроксид меди. Раствор окрашивается в ярко – синий цвет в результате образования комплексного соединения глицерата меди (II).
4. Распознавание сахарозы. Сахар-сложное орган. в-во, содержащее много С. Чтобы доказать возьмем немного сахара и добавим к нему серную кислоту. Она забирает воду, получается свободный углерод (черное в-во) С12Н22О11---серн.к-та--12С+11Н2О
5. Распознавание крахмала. Капнем р-ром иода на картофель и белый хлеб. Если образуется синее пятно, то они содержат крахмал.
6. Определение кислотности р-ров глицерина и мыла с помощью имеющихся индикаторов.
(лакмус, фенолфталеин,метилоранж). Глицерин имеет слабокислую среду, а мыло-щелочную.)))_
ТЕМА 53:
.Практическая работа №4. Распознавание пластмасс и волокон.
Тема: «Распознавание пластмасс и волокон»
Оборудование и реактивы: образцы пластмасс и волокон под номерами, спиртовка, спички, стеклянные палочки, тигельные щипцы, асбестовые сетки.
Распознавание пластмасс
В разных пакетах под номерами имеются образцы пластмасс. Пользуясь при веденными ниже данными, определите, под каким номером какая пластмасса находится.
Полиэтилен. Полупрозрачный, эластичный, жирный на ощупь материал. При нагревании размягчается, из расплава можно вытянуть нити. Горит синеватым пламенем, распространяя запах расплавленного парафина, продолжает гореть вне пламени.
Поливинилхлорид. Эластичный или жесткий материал, при нагревании быстро размягчается, разлагается с выделением хлороводорода. Горит коптящим пламенем, вне пламени не горит.
Полистирол. Может быть прозрачным и непрозрачным, часто хрупок. При нагревании размягчается, из расплава легко вытянуть нити. Горит коптящим пламенем, распространяя запах стирола, продолжает гореть вне пламени.
Полиметилметакрилат. Обычно прозрачен, может иметь различную окраску. При нагревании размягчается, нити не вытягиваются. Горит желтоватым пламенем с синей каймой и характерным потрескиванием, распространяя эфирный запах.
Фенолформальдегидная пластмасса. Темных тонов (от коричневого до черного). При нагревании разлагается. Загорается с трудом, распространяя запах фенола, вне пламени постепенно гаснет.
Распознавание волокон
В разных пакетах под номерами содержатся образцы волокон. Пользуясь приведенными ниже данными, определите, под каким номером какое волокно находится.
Хлопок. Горит быстро, распространяя запах жженой бумаги, после сгорания остается серый пепел.
Шерсть, натуральный шелк. Горит медленно, с запахом жженых перьев, после сгорания образуется черный шарик, при растирании превращающийся в порошок.
Ацетатное волокно. Горит быстро, образуя нехрупкий, спекшийся шарик темно-бурого цвета. В отличие от других волокон растворяется в ацетоне.
Капрон. При нагревании размягчается, затем плавится, из расплава можно вытянуть нити. Горит, распространяя неприятный запах.
Лавсан. При нагревании плавится, из расплава можно вытянуть нити. Горит коптящим пламенем с образованием темного блестящего шарика.
Краткие теоретические и учебно-методические материалы
по теме практического занятия
Полимерами называют вещества, молекулы которых состоят из множества повторяющихся структурных звеньев, соединенных между собой химическими связями. Существует два основных способа получения полимеров — реакции полимеризации и реакции поликонденсации.
Реакция полимеризации — это химический процесс соединения множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы ) полимера.
В реакцию полимеризации могут вступать соединения, содержащие кратные связи, то есть непредельные соединения. Это могут быть молекулы одного мономера или разных мономеров.
В первом случае происходит реакция гомополимеризации — соединение молекул одного мономера, во втором — реакция сополимеризации — соединение молекул двух и более исходных веществ.
К реакциям гомополимеризации относятся реакции получения полиэтилена, полипропилена, поливинилхлорида и т. д., например:
Выражение в скобках называют структурным звеном, а число n-в формуле полимера — степенью полимеризации.
К реакциям сополимеризации относится, например, реакция получения бутадиен-стирольного каучука.
Реакция поликонденсации — это химический процесс соединения исходных молекул мономера в макромолекулы полимера, идущий с образованием побочного низкомолекулярного продукта (чаще всего воды).
В реакции поликонденсации вступают молекулы мономеров с функциональными группами.
Например, реакция получения фенолформальдегидных смол:
С помощью реакций поликонденсации получают полиэфиры, полиамиды, полиуретаны, полиакрил и т. д.
Пластмассы.
Пластмассами называют материалы, изготовляемые на основе полимеров. Пластмассы сочетают в себе разнообразные ценные качества, такие как лёгкость, прочность, химическая
стойкость и др., которые обусловили проникновение их в различные отрасли народного хозяйства. Кроме полимеров (их часто называют смолой) в пластмассах почти всегда содержатся другие компоненты, придающие материалу определённые качества. Полимерное вещество является для них связующим.
В пластмассы входят наполнители (древесная мука, ткань, асбест, стекловата и др.), которые улучшают их механические свойства.
Пластификаторы – повышают эластичность, устраняют хрупкость.
Стабилизаторы – способствуют сохранению свойств пластмасс в процессе их переработки и использования; красители придают необходимую окраску.
Обычные способы получения полимеров – это реакции полимеризации, лежащие в основе получения термопластичных пластмасс, и реакции поликонденсации, лежащие в основе получения термореактивных пластмасс.
Термопластичные полимеры при нагревании размягчаются и в этом состоянии легко изменяют форму, которую сохраняют при охлаждении. При следующем нагревании они снова размягчаются и могут принимать новую форму.
Термореактивные полимеры при нагревании сначала становятся пластичными, при дальнейшем нагревании утрачивают пластичность, становятся неплавкими. Повторно переработать такой полимер в новое изделие невозможно.
Наиболее типичными способами получения изделий из термопластичных пластмасс является литьё под давлением и экструзия (выдавливание), а из термореактивных пластмасс – горячее прессование.
Краткая характеристика некоторых пластмасс
Полиэтилен – твёрдый, жирный на ощупь, белого цвета термопластичный полимер. Стоек по отношению к агрессивным средам. Благодаря высокой температуре плавления, обладает существенными преимуществами перед другими материалами (полиэтиленом, полиметилметакрилатом, поливинилхлоридом), близким по свойствам.
Полипропилен идёт на изготовление высокопрочной изоляции, труб, деталей машин, химической аппаратуры. Благодаря высокой механической прочности, его используют для изготовления канатов, сетей, технических тканей.
Поливинилхлорид – обладает большой химической стойкостью, хорошими электроизоляционными свойствами и большой механической прочностью. Термопластичный полимер, на его основе изготавливают два вида пластмасс: винипласт, обладающий значительной жесткостью и пластикат – более мягкий материал.
Винипласт идёт на изготовление химически стойкой аппаратуры, ванн для никелирования, жестких плёнок. Пластикат используется для изоляции, для производства предметов широкого потребления (плащей, сумок, линолеума, клеенок, для получения материалов, заменяющих кожу – в производстве обуви).
Полиметилметакрилат – за свою прозрачность называется органическим стеклом. Обладает удовлетворительной прочностью и значительно меньшей хрупкостью, чем обычное силикатное стекло, способностью пропускать ультрафиолетовые лучи. Термопластичный полимер, находит применение в строительстве, в часовом деле, различных отраслях промышленности и в быту.
Фенолформальдегидная смола – обычно используется в смеси с наполнителями, красителями и т.п., а затем уже производят формование изделий способом горячего прессования. Термореактивный полимер. Введение различных наполнителей позволяет получить материалы, имеющие ценные свойства. Так текстолит и стеклотекстолит, армированные текстильными тканями и стеклотканью, по прочности близки к дюралюминию и стали.
Текстолит – хлопчатобумажная ткань, пропитанная фенолформальдегидной смолой и спрессованная при повышенной температуре. Устойчив к нагрузкам. Легко поддаётся механической обработке. Применяется для изготовления шарикоподшипников, шестерёнки для машин, предусмотренных для больших нагрузках.
Таблица 1 « Распознавание пластмасс»
Название пластмассы | Отношение к нагреванию | Характер горения |
Полиэтилен | Размягчается – можно вытянуть нить. | Горит синеватым пламенем, распространяя слабый запах горящего парафина. При горении отделяются капли. Вне пламени продолжает гореть. |
Поливинилхлорид (полихлорвинил) | Размягчается при 60-70˚С, выше 110-120˚С разлагается. | Горит коптящим пламенем. Вне пламени не горит. |
Полистирол | Размягчается – легко вытягиваются нити. | Горит коптящим пламенем, распространяя специфический запах. Вне пламени продолжает гореть. |
Полиметилметакрилат (орг. стекло) | Размягчается. | Горит жёлтым пламенем, с синей каймой у краев, с характерным потрескиванием, распространяя резкий запах. |
Целлулоид | Разлагается. | Горит очень быстро, оставляя следы золы. |
Фенолформальдегидные пластмасы | Разлагается при сильном нагревании | Загорается с трудом, при горении обугливается, распространяя резкий запах фенола. Вне пламени постепенно гаснет, не размягчается. |
Волокна
– природные или искусственные высокомолекулярные вещества, отличающиеся от других полимеров более высокой степенью упорядоченности молекул и, как следствие, особыми физическими свойствами, позволяющими использовать их для получения нитей. Волокна делят на натуральные (природные) и химические. Натуральные волокна могут быть растительного или животного происхождения. Химические волокна в свою очередь подразделяют на искусственные и синтетические.
Природные волокна:
Волокно растительного происхождения – хлопок, лен.
Хлопковое волокно получают из субтропического растения – хлопчатника. Хлопковое волокно легкое, достаточно прочное, мягкое, гигроскопичное.
Волокна животного происхождения – шерсть и шелк.
Шелк вырабатывают многочисленные гусеницы и пауки.
Шерсть – волокна волосяного покрова овец, коз, верблюдов и других животных.
Искусственные волокна:
Наибольшее значение среди искусственных волокон занимают ацетатное и вискозное волокна, получаемые из древесной целлюлозы.
Синтетические волокна:
из синтетических волокон наибольший интерес представляют полиамидное волокно – полиамид – 6 (капрон) и полиэфирное – полиэтиленгликольтерефталат (лавсан).
Капрон получают из капролактала, который под воздействием воды размыкает цикл, образуя ε – капроновую кислоту. Из этой кислоты в результате поликонденсации образуется полимер линейной структуры:
n H2N – (CH2)5 – COOH → [- NH – (CH2)5 – CO -]n + (n-1)H2O
Лавсан (полиэтилентерефталат) - представитель полиэфиров:
Получают реакцией поликонденсации терефталевой кислоты и этиленгликоля:
HOOC-C6H4-COOH + HO-CH2CH2-OH + HOOC-C6H4-COOH + … →
→ HOOC-C6H4-CO – O-CH2CH2-O – OC-C6H4-CO – … + nH2O
полимер-смола
В общем виде:
n HOOC-C6H4-COOH + n HO-CH2CH2-OH →
→ HO-(-CO-C6H4-CO-O-CH2CH2-O-)n-H + (n-1) H2O
Таблица 2. «Распознавание волокон»
Волокно | Сжигание |
Хлопок | Горит быстро с запахом жжёной бумаги. После горения остается серый пепел. |
Шерсть | Горит медленно с запахом жжёных перьев. После горения образуется хрупкий чёрный шарик, растирающийся в порошок. |
Ацетатное волокно | Горит быстро, образуя нехрупкий спёкшийся тёмно-бурый шарик. Вне пламени горение постепенно прекращается. |
Капрон | Плавится, образуя твёрдый блестящий шарик тёмного цвета. При горении распространяется неприятный запах. |
Лавсан | Плавится, затем горит коптящим пламенем с образованием тёмного твердого блестящего шарика. |
Нитрон | Горит, образуя тёмный рыхлый неблестящий шарик. |
Вопросы для закрепления теоретического материала к практическому занятию:
Дайте определения следующим понятиям: полимеры, структурное звено, степень полимеризации.
В чем разница между реакциями полимеризации и поликонденсации?
Какие полимеры называются термопластичными?
Какие полимеры называются термореактивными?
Дайте классификацию волокон.
ГРУППА 505 БИОЛОГИЯ 33, 34
ТЕМА 33:Вид. Критерии вида. Популяция.
Л.р.№1 «Морфологические особенности растений различных видов».
Большой вклад в дальнейшую разработку понятия «вид» внес шведский ученый Карл Линней (1707—1778г.г.). Согласно его представлениям, виды — объективно существующие в природе образования, и между видами имеются различия. Так, например, явно различаются между собой по внешним признакам медведь и волк. Но волк, шакал, гиена, лисица внешне более сходны, так как принадлежат к одному семейству — волчьих. Еще в большей степени сходна внешность у видов одного рода, например волк и собака.
Вид — исторически сложившаяся совокупность популяций, особи которых обладают наследственным сходством морфологических, физиологических и биохимических особенностей, могут свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям жизни и занимают определенную область — ареал. (записать определение в тетрадь)
Особи, принадлежащие к одному виду, не скрещиваются с особями другого вида, характеризуются генетической общностью, единством происхождения. Вид существует во времени: он возникает, распространяется, может сохраняться неопределенно долгое время в устойчивом, почти неизменном состоянии (реликтовые виды) или непрерывно изменяться. Одни виды со временем исчезают, не оставляя новых ветвей. Другие дают начало новым видам.
Учитель: Признаки, по которым один вид можно отличить от другого, называют критериями вида. (Ученики записывают в тетрадь названия критериев вида)
Критерии вида:
1. Это был первый и долгое время единственный критерий, используемый для описания видов. Морфологический критерий самый удобный и заметный, поэтому и сейчас широко используется в систематике растений и животных.
В основе морфологического критерия лежит сходство внешнего и внутреннего строения особей одного вида. Морфологический критерий предполагает описание внешних признаков особей, входящих в состав определенного вида. По внешнему виду, размерам и окраске оперения можно, например, легко отличить большого пестрого дятла от зеленого, малого пестрого дятла от желны, большую синицу от хохлатой, длиннохвостой голубой и от гаички. По внешнему виду побегов и соцветий, размерам и расположению листьев легко различают виды клевера: луговой, ползучий, люпиновый, горный.
Однако особи в пределах вида иногда так сильно различаются, что только по морфологическому критерию не всегда удается определить, к какому виду они относятся. Вместе с тем существуют виды морфологически сходные, но особи этих видов не скрещиваются между собой. Это — виды-двойники, которые исследователи открывают во многих систематических группах.
Так, под названием «крыса черная» различают два вида-двойника, имеющих в кариотипах по 38 хромосом и живущих на всей территории Европы, Африки, Америки, Австралии, Новой Зеландии, Азии к западу от Индии, и крыс, имеющих 42 хромосомы, распространение которых связано с монголоидными оседлыми цивилизациями, населяющими Азию к востоку от Бирмы. Установлено также, что под названием «малярийный комар» существует до 15 внешне неразличимых видов, ранее считавшихся одним видом. Около 5% всех видов насекомых, птиц, рыб, земноводных, червей составляют виды-двойники.
2. В основу физиологического критерия положено сходство всех процессов жизнедеятельности у особей одного вида, прежде всего сходство размножения. Особи разных видов, как правило, не скрещиваются, или потомство их бесплодно. Например, у многих видов мухи дрозофилы сперма особей чужого вида вызывает иммунную реакцию, что приводит к гибели сперматозоидов в половых путях самки. В то же время в природе есть виды, особи которых скрещиваются и дают плодовитое потомство (некоторые виды канареек, зябликов, тополей, ив).
3. Географический критерий основан на том, что каждый вид занимает определенную территорию или акваторию, называемую ареалом. Он может быть большим или меньшим, прерывистым или сплошным. Однако огромное число видов имеет накладывающиеся или перекрывающиеся ареалы.
Кроме того, существуют виды, не имеющие четких границ распространения, а также существуют виды-космополиты. Космополитами являются некоторые обитатели внутренних водоемов — рек и пресноводных озер (виды рдестов, ряски, тростник). Обширный набор космополитов имеется среди сорных и мусорных растений, синантропных животных (виды, обитающие рядом с человеком или его жилищем) — постельный клоп, рыжий таракан, комнатная муха, а также одуванчик лекарственный, ярутка полевая, пастушья сумка и др.
Существуют также виды, которые имеют разорванный ареал. Так, например, липа растет в Европе, встречается в Кузнецком Алатау и Красноярском крае. Голубая сорока имеет две части ареала — западноевропейскую и восточносибирскую. Поэтому географический критерий, как и другие, не является абсолютным.
4. Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя свойственные ему функции в определенном биогеоценозе. Так, например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологической приуроченности. К ним относятся многие сорные растения, а также виды, находящиеся под опекой человека: комнатные и культурные растения, домашние животные.
Особенности поведения подчас тесно связаны со спецификой вида, например, с особенностями устройства гнезда. Три вида наших обычных синиц гнездятся в дуплах лиственных деревьев, преимущественно берез. Большая синица на Урале выбирает обычно глубокое дупло в нижней части ствола березы или ольхи, образовавшееся в результате выгнивания древесины. Это дупло недоступно ни дятлам, ни воронам, ни хищным млекопитающим. Синица московка заселяет морозобойные трещины в стволах березы и ольхи. Гаичка же предпочитает строить дупло сама, выщипывая полости в трухлявых или старых стволах березы и ольхи, и без этой трудоемкой процедуры она не отложит яиц.
Так, виды дятлов различаются по характеру питания. Большой пестрый дятел зимой питается семенами лиственницы и сосны, раздалбливая шишки в своих «кузницах». Черный дятел желна добывает личинок усачей и златок из-под коры и из древесины елей, а малый пестрый дятел долбит мягкую древесину ольхи либо добывает насекомых из стеблей травянистых растений.
5. Генетический критерий основан на наборе хромосом, свойственный конкретному виду организма. Виды различаются по числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является абсолютным.
Во-первых, у многих видов число хромосом одинаково и форма их сходна. Например, у видов растений семейства бобовых имеют 22 хромосомы. Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций. Например, ива козья может иметь диплоидное (38) или тетраплоидное (76) число хромосом. У серебристого карася встречаются популяции с набором хромосом 100, 150, 200, тогда как нормальное число их равно 50. У диких горных баранов, разными исследователями выделялось от 1 до 17 видов. Анализ показал наличие трех кариотипов: 54-хромосомный — у муфлонов, 56-хромосомный — у архаров и аргали и 58-хромосомный — у обитателей гор Средней Азии — уриалов. У радужной форели число хромосом варьирует от 58 до 64, у беломорской сельди встречаются особи с 52 и 54 хромосомами. В Таджикистане на участке протяженностью всего 150 км, зоологами была обнаружена популяция слепушонки обыкновенной с набором хромосом от 31 до 54.
Таким образом, на основе генетического критерия нельзя достоверно определить принадлежность особей к конкретному виду.
6. Биохимический критерий позволяет различать виды по составу и структуре определенных белков, нуклеиновых кислот и др. Особи одного вида имеют сходную структуру ДНК, что обусловливает синтез одинаковых белков, отличающихся от белков другого вида. Вместе с тем у некоторых бактерий, грибов, высших растений состав ДНК оказался очень близким. Следовательно, есть виды-двойники и по биохимическим признакам.
Интерес к этому критерию появился в последние десятилетия в связи с развитием биохимических исследований. Он не находит широкого применения, так как не существует каких-либо специфических веществ, характерных только для одного вида и, кроме того, он весьма трудоемкий и далеко не универсальный. Однако им можно воспользоваться в тех случаях, когда другие критерии «не работают». Разработанные методы дают возможность сравнивать состав ДНК у законсервированных в толщах земли бактерий и ныне живущих форм. Было проведено, например, сравнение состава ДНК у пролежавшей около 200 млн. лет в толще солей палеозойской бактерии псевдомонады солелюбивой и у ныне живущих псевдомонад. Состав их ДНК оказался идентичным, а биохимические свойства — сходными.
7. Исторический критерий определяется общностью предков организмов, у них общая единая история возникновения и развития вида.
Таким образом, только учет всех или большинства критериев позволяет отличить особей одного вида от другого. Основной формой существования жизни и единицей классификации живых организмов является вид. Для выделения вида используется совокупность критериев: морфологический, физиологический, географический, экологический, генетический, биохимический. Вид является результатом длительной эволюции органического мира. Будучи генетически закрытой системой, он, тем не менее, исторически развивается и изменяется.
3 ЭТАП: ВЫВОД ПО ТЕМЕ УРОКА
Учитель: 1. Что представляет собой вид? 2. Что такое критерии вида? 3. Применение, каких критериев достаточно для выделения вида? 4. Какие критерии наиболее объективны для разделения близкородственных видов?
Сделаем вывод: Вид — это совокупность особей, которые обладают наследственным сходством морфологических, физиологических и биохимических особенностей, могут свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям и занимают определенный ареал. Порой самые опытные биологи становятся в тупик, определяя, принадлежат ли данные особи к одному виду или нет, для этого требуется учитывать все критерии вида.
ТЕМА 34:Роль изменчивости в эволюционном процессе.
Роль изменчивости в эволюционном процессе.
Различают наследуемые изменения самих генов (мутации), изменения, обусловленные сочетанием разных генов у индивидов (комбинативная наследственная изменчивость), изменения, вызванные влиянием средовых условий (модификационная изменчивость).
а). Наследственная изменчивость дает материал для эволюции.
Наследственная изменчивость — это мутации, которые могут возникать в популяциях. Рецессивные мутации накапливаются, доминантные проявляются. Отбор, действуя в популяциях, отбраковывает особи с ненужными признаками, оставляя особей с полезными признаками. Что является результатом эволюционного процесса? Приобретение приспособлений отдельными группами организмов может при определенных условиях привести к образованию новых видов
б). Комбинативная изменчивость.
Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов.
Практически неограниченными источниками генетической изменчивости служат три процесса:
Независимое расхождение гомологичных хромосом в первом мейотическом делении.
Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
2. Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
3. Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются).
Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.
в). Значение комбинативной изменчивости
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Таким образом, комбинативная изменчивость — это следствие перекреста гомологичных хромосом, их случайного расхождения в мейозе и случайного сочетания гамет при оплодотворении. Комбинативная изменчивость ведет к появлению бесконечно большого разнообразия генотипов и фенотипов. Она служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора. Если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, количество возможных гамет составит 223, а число возможных генотипов — З23. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы отличаются по нескольким генам и в расчете не учтено явление перекреста. Поэтому количество возможных генотипов выражается астрономическим числом и можно с уверенностью утверждать, что появление двух одинаковых людей практически невероятно. Однояйцевые близнецы составляют исключение.
г). Мутационная изменчивость.
Мутационной называется изменчивость самого генотипа.
Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Мутационная изменчивость играет роль главного поставщика наследственных изменений.
Именно она является первичным материалом всех эволюционных преобразований. Одним из распространенных типов геномных мутаций является полиплоидия, имеющая важное значение в эволюции растений. Полиплоидные виды растений часто занимают арктические и альпийские зоны. Считают, что это связано с их повышенной устойчивостью к неблагоприятным факторам среды.
Хромосомные мутации также играют важную эволюционную роль. Прежде всего необходимо указать на удвоение генов в одной хромосоме. Именно благодаря удвоениям генов в процессе эволюции накапливается генетический материал. Нарастание сложности организации живого в ходе исторического развития в значительной степени опиралось на увеличение количества генетического материала. Достаточно сказать, что количество ДНК в клетке у высших позвоночных примерно в 1000 раз больше, чем у бактерий. Другой тип хромосомных мутаций, который достаточно часто обнаруживается у животных и растений, — перемещение участка хромосомы.
Особи, гетерозиготные по таким мутациям, часто обладают пониженной плодовитостью, в то время как гомозиготы размножаются нормально. Некоторые ученые полагают, что появление таких мутаций может нарушать генетическое единство вида и приводить к обособлению внутри его репродуктивно изолированных популяций.
Наиболее частый тип мутаций — генные. Они играют очень важную роль в эволюционном процессе. Мутации отдельных генов происходят редко. Мутация гена возникает в среднем в одной из 100000 гамет. Но так как количество генов в организме (например, млекопитающих) составляет около 40000, то практически каждая особь несет вновь возникшую мутацию.
Большинство мутаций рецессивные, доминантные мутации возникают намного реже. Доминантные и рецессивные мутации ведут себя в популяциях по-разному.
Доминантные мутации, даже если они находятся в гетерозиготном состоянии, проявляются в фенотипах особей уже первого поколения и подвергаются действию естественного отбора. Рецессивные же мутации проявляются в фенотипе только в гомозиготном состоянии.
д). Связь генетики с эволюционной теорией (С.С.Четвериков). Рецессивная мутация, прежде чем она проявится в фенотипе гомозигот, должна накопиться в значительном количестве в популяции. Эту мысль первым высказал отечественный генетик С. С. Четвериков. Он был первым ученым, сделавшим важнейший шаг на пути объединения генетики с эволюционной теорией. В 1926 г. Четвериков опубликовал знаменитую работу «О некоторых моментах эволюционного процесса с точки зрения современной генетики», с которой и начался новый этап развития эволюционной теории.
С. С. Четвериков сделал важный вывод о насыщенности природных популяций большим количеством рецессивных мутаций. Он писал, что популяция, подобно губке, впитывает рецессивные мутации, оставаясь при этом фенотипически однородной. Существование такого скрытого резерва наследственной изменчивости создает возможность для эволюционных преобразований популяций под воздействием естественного отбора. Как показал И. И. Шмальгаузен, сама способность популяций накапливать генетическую изменчивость является результатом естественного отбора.
В последнее время благодаря успехам молекулярной генетики и генетики развития все более ясным становится, какую огромную роль играют в эволюции мутации, возникающие не в самих структурных (кодирующих белки) генах, а в регуляторных участках этих генов. Они могут модифицировать уровень транскрипции структурных генов, время и место их включения и выключения, создавая огромное разнообразие форм и функций организмов. Значительные морфологические различия между классами позвоночных зависят от накопления мелких мутаций в регуляторных элементах.
Рассмотрим простой пример. Размер и положение грудной клетки у курицы, мыши и удава контролируются одним и тем же структурным геном. Последовательность нуклеотидов в этом гене одинакова у всех трех видов (как и у всех остальных позвоночных). Однако изменения, произошедшие в его регуляторных элементах, приводят к тому, что у удава этот ген работает почти во всех клетках хорды эмбриона, у мыши — в передней части, а у курицы — в задней части хорды. В результате грудная клетка удава формируется от головы почти до кончика хвоста, у мыши — ближе к голове, а у курицы — ближе к хвосту.
В природных популяциях накоплено огромное число мутаций по регуляторным элементам самых разных структурных генов.
Громадное генотипическое и, следовательно, фенотипическое разнообразие в природных популяциях является тем исходным эволюционным материалом, с которым оперирует естественный отбор.
ГРУППА 401 ЭКОЛОГИЯ 35
ТЕМА 35:Особенности пищевых и информационных связей человека.
Растворимость зависит от природы растворяемого вещества и растворителя, температуры, давления и влияния посторонних веществ.
Природа веществ, образующих раствор. Этот фактор хорошо иллюстрирует старое правило: подобное растворяется в подобном. Под подобием подразумевают природу химической связи в веществах, образующих раствор. Действительно, две неполярные жидкости будут смешиваться друг с другом неограниченно, а неполярная и полярная жидкости будут практически нерастворимы друг в друге.
Вещества, состоящие из неполярных молекул, лучше растворяются в неполярных растворителях, например, сера хорошо растворяется в сероуглероде и практически не растворяется в воде. Кислород в воде растворяется в 10 раз хуже, чем в бензоле.
Вещества с ионным и ковалентным полярным характером связи, как правило, хорошо растворяются в сильно полярных растворителях. Однако ионные кристаллические структуры гораздо прочнее, чем молекулярные, поэтому, когда энергия кристаллической решетки велика, а энергия сольватации низка, растворимость таких соединений в воде мала (BaSO4, CuS, CaF2 и т.д.).
Максимальную энергию кристаллической решетки имеют полимерные соединений с ковалентной связью (алмаз, диоксид кремния и т.д.), поэтому растворимость таких веществ ничтожно мала в любых растворителях.
Температура.
Согласно принципу Ле Шателье, на зависимость растворимости от температуры влияет значение теплового эффект растворения данного вещества в данном растворителе.
Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость будет уменьшаться (например, Ca(OH)2 в воде) и наоборот. Для большинства солей растворимость при нагревании увеличивается.
Практически все газы растворяются с выделением тепла, поэтому растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением температуры - увеличивается.
Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества сильно изменяют свою растворимость в зависимости от температуры, другие - не очень сильно (табл. 2).
Таблица 2.
Влияние температуры на растворимость некоторых твердых веществ.
В таблице приведена растворимость в г/100 г воды
Вещество | Температура, оC | ||||
0 | 20 | 50 | 80 | 100 | |
KBr | 53,5 | 65,2 | 80,8 | 94,6 | 103,3 |
NaCl | 35,7 | 35,9 | 36,8 | 38,1 | 39,4 |
CaSO4 | 0,176 | 0,206 | 0,180 | 0,102 | 0,066 |
Если полученные экспериментальным путем значения растворимости при различных температурах нанести на оси координат, то получаются так называемые кривые растворимости различных веществ (рис. 3).
Эти кривые имеют большое практическое значение. Используя эти кривые, можно рассчитать, сколько вещества, например KNO3, выпадет в осадок при охлаждении до 20оС насыщенного раствора, приготовленного при температуре 80оС. На этом основаны процессы, которые позволяют очищать некоторые вещества. Дело в том, что при охлаждении ненасыщенного раствора образуется насыщенный раствор, но насыщенный по основному веществу, которого больше всего, а не по примесям. Поэтому при охлаждении в осадок выпадает только чистое вещество, а примеси (вместе с частью вещества) остаются в растворе. Чистые кристаллы потом отфильтровывают от охлажденного, загрязненного примесями раствора. Этот способ очистки называется ПЕРЕКРИСТАЛЛИЗАЦИЕЙ. Так очищают, например, многие лекарственные препараты.
Рис. 3. Кривые растворимости твердых (а) и газообразных (б) веществ.
Давление. По принципу Ле Шателье увеличение давления смещает равновесие в сторону уменьшения объема системы. При растворении твердых веществ в жидкости объем изменяется мало, поэтому давление не будет существенным образом влиять на растворимость солей. Также влияние давления практически не будет проявляться и для смеси двух жидкостей.
Растворимость газов сильно зависит от давления, так как в этом случае происходит значительное изменение объема системы. С увеличением давления растворимость газов увеличивается.
Для смеси газов растворимость каждого из них определяется законом Генри:
Растворимость летучего вещества при постоянной температуре прямо пропорциональна его парциальному давлению над раствором.
Закон справедлив для разбавленных растворов, невысоких давлений и при отсутствии химического взаимодействия с растворителем.
ТЕМА: Массовая доля растворенного вещества.
Массовая доля.
Один из самых распространенных способов выражения концентрации раствора – через массовую долю растворенного вещества.
Отношение массы растворенного вещества к общей массе раствора называют массовой долей растворенного вещества.
Массовую долю обозначают греческой буквой «омега» и выражают в долях единицы или процентах (рисунок 2).
Рис.2. Массовая доля компонентов смеси.
Посмотрев видео
вы вникнете в понятие массовой доли и научитесь ее вычислять.
Если в 100 г раствора содержится 30 г хлорида натрия, это означает, что ω(NaCl) = 0,3 или ω(NaCl) = 30 %. Можно также сказать: «имеется тридцатипроцентный раствор хлорида натрия».
Массовая доля — самая распространенная в быту и большинстве отраслей промышленности концентрация. Именно массовая доля жира, например, указана на пакетах с молоком (посмотрите на рисунок 3).
Рис.3. Массовая доля жира в молоке.
Масса раствора складывается из массы растворителя и массы растворенного вещества, т. е.:
m(раствора) = m(растворителя) + m(растворенного вещества).
Предположим, массовая доля растворенного вещества равна 0,1, или 10%. Следовательно, оставшиеся 0,9, или 90%, – это массовая доля растворителя.
Массовая доля растворенного вещества широко используется не только в химии, но и в медицине, биологии, физике, да и в повседневной жизни. Рассмотрим решение некоторых задач
Рис.4. Задача на нахождение массовой доли.
Комментариев нет:
Отправить комментарий