Здравствуйте, уважаемые студенты, записывайте дату, тему и выполняйте необходимые записи(ВСЁ подряд не пишите, читайте, выбирайте, можно составить план, ЕСЛИ ЕСТЬ ВИДЕО, НАДО ПОСМОТРЕТЬ ,ВЫПОЛНИТЬ ПО НЕМУ ЗАПИСИ, МНОГО НЕ НУЖНО ПИСАТЬ. Материала может быть выложено много, но это не значит, что всё надо записывать! После этого, сфотографируйте и отошлите мне на почту rimma.lu@gmail.com Тетрадь привезете, когда перейдем на очную форму обучения.)
Моя почта : rimma.lu@gmail.com Жду ваши фотоотчеты!
СПРАВА НАХОДИТСЯ АРХИВ- ТАМ СМОТРИМ ДАТУ И ГРУППЫ
РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 27.02.23г. - 03.03.23г.
РАСПИСАНИЕ ЗАНЯТИЙ НА НЕДЕЛЮ: 06.03.23г. - 10.03.23г.
Пн.06.03: 306, 401, 401, 408
Вт. 07.03:406, 505, 505, 501
Ср. 08.03: 406, 403, 401, 501
Чт. 09.03: 501, 306, 508
Пт. 10.03: 505, ----, 501
ГРУППА 505 ХИМИЯ36,37
ТЕМА :ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ В СВЕТЕ ТЕОРИИ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ
Среди кислот есть сильные и слабые электролиты, а их диссоциация протекает преимущественно по I ступени. Сильные кислоты диссоциируют в водных растворах практически нацело.
ВАЖНЕЙШИЕ ОБЩИЕ ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ
1. Кислоты взаимодействуют с металлами. При этом образуются соли и выделяется водород. Однако металлы, стоящие в электрохимическом ряду напряжений металлов правее водорода, не вытесняют его из кислот:
HNO3 (как концентрированная, так и разбавленная), концентрированная H2SO4 реагируют с металлами иначе!
2. Кислоты взаимодействуют с осно́вными и амфотерными оксидами:
При избытке кислот образуются кислые соли:
MgO + 2H2SO4 (изб.) = Mg(HSO4)2 + Н2O
3. Взаимодействие кислот с основаниями является реакцией нейтрализации:
4. Кислоты взаимодействуют с солями:
Для протекания реакции необходимо выполнение одного из следующих условий:
а) кислота должна быть более сильной, чем та, что образовала соль;
б) в результате реакции должно образоваться нерастворимое или летучее соединение (покидающее сферу реакции).
Основные понятия
Ион гидроксония • Основность кислот • Сильные кислоты • Слабые кислоты
Вопросы и задания
1. Почему безводные кислоты слабо проводят электрический ток?
2. Какая соль образуется при взаимодействии 4 г едкого натра и 9,8 г фосфорной кислоты?
3. В соответствии с приведенной ниже схемой превращений составьте уравнения реакций в молекулярной и ионной (там, где это возможно) формах: S → SO2, → H.,SO3 → CaSO3 → ? → ?
ТЕМА: Особенности взаимодействия концентрированной серной и азотной кислот с металлами
Серная кислота. В реакциях разбавленной серной кислоты с металлами, находящимися в ряду стандартных электродных потенциалов (ряд Бекетова) до водорода, окислителями являются ионы водорода, например:
Zn+H2SO4 = ZnSO4 + H2
Взаимодействие концентрированной серной кислоты с металлами протекает более сложно.
- До -2 серу могут восстановить только очень активные металлы — в ряду напряжений до алюминия включительно.
Реакции будут идти вот так:
8Li + 5H2SO4(конц.) → 4Li2SO4 + 4H2O + H2S↑
4Mg + 5H2SO4(конц.) → 4MgSO4 + 4H2O + H2S↑
8Al + 15H2SO4(конц.) (t)→ 4Al2(SO4)3 + 12H2O + 3H2S↑
- при взаимодействии H2SO4 (конц) с металлами в ряду напряжений после алюминия, но до железа, то есть с металлами со средней активностью сера восстанавливается до 0:
3Mn + 4H2SO4(конц.) → 3MnSO4 + 4H2O + S↓
2Cr + 4H2SO4(конц.) (t)→ Cr2(SO4)3 + 4H2O + S↓
- все остальные металлы, начиная с железа в ряду напряжений (включая те, что после водорода, кроме золота и платины, конечно), могут восстановить серу только до +4. Так как это малоактивные металлы:
2Fe + 6H2SO4(конц.) (t)→ Fe2(SO4)3 + 6H2O + 3SO2↑
(обратите внимание, что железо окисляется до +3, до максимально возможной, высшей степени окисления, так как оно имеет дело с сильным окислителем)
2Ag + 2H2SO4(конц.) → Ag2SO4 + 2H2O + SO2↑
В этих реакциях окислителем является сера в степени окисления +6.
Уравняйте реакции методом электронного баланса:
Cu + H2SO4 (конц.) = CuSO4 + SO2 + H2O
Zn + H2SO4 (конц.) = ZnSO4 + S + H2O
H2SO4 (конц) окисляет некоторые неметаллы (которые проявляют восстановительные свойства), как правило, до максимальной — высшей степени окисления (образуется оксид этого неметалла). Сера при этом тоже восстанавливается до SO2:
2P + 5H2SO4(конц.) → P2O5 + 5H2O + 5SO2↑
Свежеобразованный оксид фосфора (V) реагирует с водой, получается ортофосфорная кислота. Поэтому реакцию записывают сразу:
2P + 5H2SO4(конц) → 2H3PO4 + 2H2O + 5SO2↑
То же самое с бором, он превращается в ортоборную кислоту:
2B + 3H2SO4(конц) → 2H3BO3 + 3SO2↑
Очень интересны взаимодействие серы со степенью окисления +6 (в серной кислоте) с «другой» серой (находящейся в другом соединении). В рамках ЕГЭ рассматривается взаимодействие H2SO4 (конц) с серой (простым веществом) и сероводородом.
Начнем с взаимодействия серы (простого вещества) с концентрированной серной кислотой. В простом веществе степень окисления 0, в кислоте +6. В этой ОВР сера +6 будет окислять серу 0.
H2SO4(конц.) + H2S → S↓ + SO2↑ + 2H2O
Уравняйте реакции методом электронного баланса
S+H2SO4 (конц.) = SO2 + H2O
C + H2SO4 (конц.) = SO2 + CO2 + H2O
Железо, алюминий и хром концентрированной серной кислотой пассивируются, т. е. реакция не идёт. В связи с этим безводную серную кислоту можно хранить в железной или алюминиевой таре и перевозить в стальных цистернах.
H2SO4 (конц) , так или иначе, взаимодействует с галогенидами. С фторидами и хлоридами ОВР не протекает, проходит обычный ионно-обменный процесс, в ходе которого образуется газообразный галогеноводород:
CaCl2 + H2SO4(конц.) → CaSO4 + 2HCl↑
CaF2 + H2SO4(конц.) → CaSO4 + 2HF↑
А вот галогены в составе бромидов и иодидов (как и в составе соответствующих галогеноводородов) окисляются ей до свободных галогенов. Только вот сера восстанавливается по-разному: иодид является более cильным восстановителем, чем бромид. Поэтому иодид восстанавливает серу до сероводорода, а бромид до сернистого газа:
2H2SO4(конц.) + 2NaBr → Na2SO4 + 2H2O + SO2↑ + Br2
H2SO4(конц.) + 2HBr → 2H2O + SO2↑ + Br2
5H2SO4(конц.) + 8NaI → 4Na2SO4 + 4H2O + H2S↑ + 4I2↓
H2SO4(конц.) + 8HI → 4H2O + H2S↑ + 4I2↓
Хлороводород и фтороводород (как и их соли) устойчивы к окисляющему действию H2SO4 (конц).
Для концентрированной серной кислоты уникально то, что она обладает водоотнимающим свойством.
Это позволяет использовать концентрированную серную кислоту самым разным образом:
Во-первых, осушение веществ. Концентрированная серная кислота забирает воду от вещества и оно «становится сухим».
Во-вторых, катализатор в реакциях, в которых отщепляется вода (например, дегидратация и этерификация):
H3C–COOH + HO–CH3 (H2SO4(конц.))→ H3C–C(O)–O–CH3 + H2O
H3C–CH2–OH (H2SO4(конц.))→ H2C=CH2 + H2O
Азотная кислота. Концентрированная азотная кислота не взаимодействует с золотом и платиной, а также пассивирует железо, алюминий и хром — на их поверхности образуется защитная плёнка. С другими металлами она взаимодействует, при этом образуются соответствующие нитраты и выделяется оксид азота(IV):
Уравняйте реакции методом электронного баланса:
Mg + HNO3 = Mg(NO3)2 +NO2+H2O
Hg + HNO3 = Hg(NO3)2 +NO2+H2O
Разбавленная азотная кислота взаимодействует с металлами по-разному в зависимости от степени разбавления.
Подумайте какой элемент в реакции магния с концентрированной азотной кислотой служит окислителем:
1)Mg+2 2)H+ 3)Mg 0 4)N+5
Рассмотрим уравнение реакции Mg и концентрированной HNO3:
Mg + 4HNO3 = Mg(NO3)2 +2NO2+H2O
Мы видим, что магний отдаёт два электрона и приобретает степень окисления +2, следовательно, он восстановитель. В ходе реакции азот в степени окисления +5 превращается в азот в степени окисления +4; значит, он принимает один электрон и служит окислителем. Соответственно окислителем служит N+5
Смесь соляной и азотной кислот называется “царской водкой”. Она способна растворять платину и золото.
HNO3+4HCl+Au→H[AuCl4 ]+NO↑+2H2O
4HNO3+18HCl+Pt→3H2 [PtCl6 ]+4NO↑+8H2O
С помощью азотной кислоты получают взрывчатые вещества:
Тринитротолуол (тротил) получают с помощью смеси азотной и серной кислот (серная кислота выступает в роли водоотнимающего средства):
Закончите уравнения химических реакций:
С6Н5-СН3 + HNO3
Тринитроглицерин получают с помощью смеси азотной и серной кислот (серная кислота выступает в роли водоотнимающего средства):
Составьте уравнение реакции:
Глицерин + азотная кислота (H2SO4 (конц.)) =
Тринитроцеллюлозу (пироксилин) получают с помощью смеси азотной и концентрированной серной кислот (серная кислота выступает в роли водоотнимающего средства):
С6Н7О2 (ОН)3 + 3nHNO3. H2SO4 (конц.) С6Н7О2 (ОNO2)3 +3nH2O
ГРУППА 501 ХИМИЯ 50,51
ТЕМА :Скорость химической реакции. Зависимость скорости химических реакций от различных факторов: природы реагирующих веществ, их концентрации, температуры, поверхности соприкосновения и использования катализаторов.
Скоростью химической реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.
Количество вещества выражают в МОЛЯХ, а объем в ЛИТРАХ. В этом случае мы получаем удобную для работы величину - КОНЦЕНТРАЦИЮ вещества в моль/л, которая ИЗМЕНЯЕТСЯ в ходе реакции.
Таким образом, скоростью реакции называют изменение концентрации какого-нибудь вещества, участвующего в реакции, за единицу времени (например, за секунду или за минуту). Отсюда другое определение скорости реакции:
Скоростью химической реакции называется ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ реагента или продукта в единицу времени.
Разницу между тем, что было и тем, что стало, часто обозначают буквой греческого алфавита Δ (дельта) Следовательно, только что приведенное определение математически можно выразить так:
где v - скорость реакции, ΔC - изменение концентрации (в моль/л), а Δτ - интервал времени, в течение которого это изменение произошло (сек). Следовательно, размерность у скорости реакции такая: "моль/л · сек".
ТЕМА: Зависимость скорости взаимодействия соляной кислоты с металлами от их природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации. Зависимость скорости взаимодействия оксида меди(II) с серной кислотой от температуры.
- Изучение влияния природы кислоты
В одну пробирку наливаем раствор соляной кислоты, а в другую – столько же уксусной (примерно одинаковой концентрации). Одновременно помещаем в них по грануле цинка. В обеих пробирках протекает реакция замещения с выделением водорода:
Zn + 2HCl = ZnCl2 + H2↑
Zn + 2CH3COOH = Zn(CH3CОО)2 + H2↑
В пробирке с уксусной кислотой водород выделяется с меньшей скоростью. Это можно объяснить тем, что уксусная кислота обладает меньшими кислотными свойствами по сравнению с соляной кислотой.
- Изучение влияния природы металла
В две пробирки нальем одинаковое количество соляной кислоты и одновременно поместим в них по кусочку металлов разной природы: цинка и магния. Уравнения данных реакций:
Zn + 2HCl = ZnCl2 + H2↑
Mg + 2HCl = MgCl2 + H2↑
Реакция соляной кислоты с магнием протекает с большей скоростью, так как интенсивнее выделяется водород. Магний – более активный металл, чем цинк (магний стоит в ряду напряжений левее цинка). Рис. 1.
ОПЫТ № 2. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ПЛОЩАДИ ПОВЕРХНОСТИ СОПРИКОСНОВЕНИЯ РЕАГИРУЮЩИХ ВЕЩЕСТВ
- Изучение влияния степени измельчения вещества (поверхности соприкосновения реагирующих веществ).
В две пробирки нальем примерно по 2 мл раствора медного купороса. Одновременно поместим в одну пробирку кусок железной проволоки, а в другую – железный порошок. В обеих пробирках протекает реакция замещения в соответствии с уравнением:
Fe + CuSO4 = FeSO4 + Cu↓
О протекании реакции замещения между сульфатом меди (II) и железом можно судить по выделению из раствора вещества красно-бурого цвета – меди. Признаки реакции быстрее появились в пробирке с порошком железа, т. к. порошок железа имеет большую площадь поверхности соприкосновения с раствором медного купороса. Мы видим, что измельчение вещества приводит к повышению скорости реакции.
ОПЫТ № 3. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ ИСХОДНЫХ ВЕЩЕСТВ
В две пробирки поместим по 2 гранулы цинка и осторожно прильем растворы уксусной кислоты: в первую пробирку – 9%-ный уксус, а во вторую – 70%-ную кислоту. Реакция протекает быстрее в той пробирке, в которой больше концентрация уксусной кислоты.
ОПЫТ № 4. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ
В две пробирки с соляной кислотой одинаковой концентрации добавим по 1 грануле цинка. Одну из пробирок поместим в стакан с горячей водой. Наблюдаем, что при нагревании скорость выделения водорода увеличивается. Скорость реакции зависит от температуры, при которой она проводится.
ОПЫТ № 5. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ УЧАСТИЯ КАТАЛИЗАТОРА
На дно стакана нальем 3%-ный раствор перекиси водорода. Пероксид водорода – очень непрочное вещество и легко разлагается на воду и кислород:
2H2O2 = 2H2O + O2↑.
При обычных условиях реакция разложения пероксида водорода протекает медленно, признаков реакции (т. е. выделения пузырьков газа) мы не наблюдаем. Добавим в стакан с перекисью водорода немного черного порошка оксида марганца (IV). Наблюдаем интенсивное выделение пузырьков газа. Внесем в стакан тлеющую лучинку – она разгорается, следовательно, выделяющийся газ – кислород. Почему при внесении в стакан оксида марганца скорость реакции увеличилась? Дело в том, что оксид марганца является катализатором реакции разложения пероксида водорода. Катализатор, участвуя в реакции, ускоряет ее, но сам в ней не расходуется.
Задача №1
Реакция протекает по уравнению А+В = 2С. Начальная концентрация вещества А равна 0,22 моль/л, а через 10 с — 0,215 моль/л. Вычислите среднюю скорость реакции.
Решение:
Используем формулу для расчёта
υ = ± ΔС/Δτ = ± (0,215-0,22)/(10-0) = 0,0005 моль/л ∙ с
Задача №2
Вычислите, во сколько раз увеличится скорость реакции при повышении температуры от 30 до 70 ∘ С, если температурный коэффициент скорости равен 2.
Решение:
По правилу Вант-Гоффа
υ=υ0·γ (t2-t1)/10
По условию задачи требуется определить υ/υ0:
υ/υ0=2 (70-30)/10 = 24 = 16
Задача №3
Запишите кинетическое уравнение для следующих уравнений реакций:
А) S(тв) + O2 (г) = SO2 (г)
Б) 2SO2 (г) + O2 (г) = 2SO3 (ж)
Решение:
Согласно закону действующих масс, который действует для газов и жидкостей:
υ = к1 C (O2)
υ = к2 C2(SO2)·C (O2)
Задача №4
Как изменится скорость реакции:
S (тв) + O2 (г) = SO2 (г)
при увеличении давления в системе в 4 раза?
Решение:
- Запишем кинетическое уравнение для реакции до повышения давления в системе. Обозначим концентрацию кислорода
С(О2) = а, концентрация серы - твёрдого вещества не учитывается.
υ = к1 а
- При повышении давления в 4 раза, объём уменьшается в 4 раза, следовательно концентрация газа кислорода увеличится в 4 раза и кинетическое уравнение примет вид:
υ' = к1 4а
- Определяем, во сколько раз возрастёт скорость реакции:
Задача №5
Как изменится скорость реакции:
2SО2 (г) + O2 (г) = 2SO3 (г)
при увеличении давления в системе в 2 раза?
Решение:
- Запишем кинетическое уравнение для реакции до повышения давления в системе. Обозначим концентрацию SO2
С(SО2) = а, концентрация кислорода C(O2) = b.
υ = к1 а2·b
- При повышении давления в 2 раза, объём уменьшается в 2 раза, следовательно концентрация газа кислорода и SO2 увеличится в 2 раза и кинетическое уравнение примет вид:
υ' = к1 (2а)2·2b = к14а2·2b= к18а2·b
- Определяем, во сколько раз возрастёт скорость реакции:
При температуре 10 ºС реакция протекает за 5 мин, при 20ºС – за 1 мин. Рассчитайте температурный коэффициент скорости реакции.
Дано: t0= 10 ºС t= 20ºС τ0= 300c τ= 60c |
γ=? |
Решение:
1) При условии, что концентрация вещества (С), вступившего в реакцию, постоянна:
При температуре 10 ºС скорость реакции равна υ0=∆C/∆τ0,
υ0=∆C/300, ∆C= 300υ0
При температуре 30 ºС скорость реакции равна υ=∆C/∆τ,
υ=∆C/60, ∆C= 60υ. Следовательно, 300υ0=60υ, а υ/υ0=300/60=5.
2) По правилу Вант Гоффа: υ= υ0γ∆t/10, υ/υ0= γ∆t/10
3) Согласно рассуждениям (1) и (2), получим γ(20-10)/10= γ=5
Комментариев нет:
Отправить комментарий