пятница, 15 апреля 2022 г.

 СУББОТА 16.04.22 г. 405 ХИМ,405 БИОЛ,401,305.


ГРУППА 405 БИОЛОГИЯ 40,41

ТЕМА:Развитие жизни в Мезозое.Развитие жизни в Кайнозое.

Мезозойская эра

Окончательно Пангея оформляется к рубежу новой геологической эры – мезозойской, начавшейся около 235 млн. лет назад. Та делится на три периода – триасовый, юрский и меловой. В мезозое происходит распад Пангеи на два суперматерика – северную Лаврвзию и южную Гондвану. В  ходе дальнейших тектонических процессов Гондвана раскалывается на Южную Америку, Африку, Антарктиду и Австралию, а также более мелкие обломки, например, Индостан. Лавразия распадётся на два материка – Евразию и Северную Америку. К концу мезозоя основные современные материковые плиты были полностью разделены.

 
  

В ходе этих процессов, сопровождающихся мощным вулканизмом и на поверхность изливаются огромные количества лавы (в некоторых местах – слоем до 8 км толщиной) и газов.  Температура поверхности Земли резко возрастает и так же резко падает. В среднем мезозое почти на всей суше господствует теплый влажный климат. Это обеспечивает богатство и разнообразие биоты.

В массовом сознании это «эра динозавров». Отчасти так оно и есть. Следует помнить, однако, что в экономике природы беспозвоночные животные играют гораздо большую роль, чем позвоночные, не говоря уже о растениях. Важнейшие отряды насекомых - бабочки, двукрылые (мухи и комары), перепончатокрылые (муравьи, пчёлы, осы) – тоже уроженцы мезозоя (точнее, первые достоверные находки их останков датируются мезозоем). Значительные перестройки происходят также в морских сообществах. Появляются новые классы и типы водорослей, которые в настоящее время являются основными продуцентами Мирового океана – как у берегов (бурые водорсли), так и в толще воды. Одноклеточные диатомовые водоросли заключены в двустворчатый кремнезёмный панцирь точь-в-точь как  кусок мыла в мыльнице . Другие одноклеточные водоросли – кокколитофориды, достигшие в позднем мезозое величайшего расцвета, имеют панцирь, состоящий из известковых чешуек . С того времени и по сей час на дне океана формируются толщи кремнезёмных осадков (в тропической и умеренной зонах) – кладбища диатомей и толщи карбонатных осадков (в субтропической зоне) – кладбища кокколитофорид и глобигерин. Если в богатые атмосферной углекислотой, протерозойские времена, донные карбонаты формировались абиогенно в виде доломитов CaMg(CO3)2, то теперь соли угольной кислоты отлагаются на дно только под влиянием живых организмов, главным образом, невидимых человеческим глазом. Из них и строят белокаменные дворцы. Диатомовые и карбонатные илы занимают в океане площадь в несколько раз большую, чем территория России.

Итак, в общественном сознании мезозой – время гигантских ящеров. Другие группы живых существ, прежде всего новые классы растений, сыграли неизмеримо большую роль в эволюции биосферы, но это практически никому не известно. Причина – они не страшные. Однако есть в этом своя биологическая загадка: почему именно тогда естественный отбор работал на создание гигантов? Перход к следующей эре - это решительная ставка на мелкие сухопутные формы.

 

Первый период  мезозоя – триасовый. Грандиозная засуха пермотриаса – 20 млн. лет засухи – приводит к грандиозному вымиранию пышной фауны и флоры позднего палеозоя. Раннемезозойские пейзажи обычно изображаются бурой каменистой пустыней .

Масштабы вымирания не повторились никогда. Но вот что удивительно - исчезли не только влаголюбивые амфибии , но и огромное количество морских таксонов. Поэтому только засухой исчерпывающе объяснить пермотриасовую катастрофу не получится. Конечно, наготове палочка-выручалочка - падение крупного метеорита, но это для массовой культуры. Для самих себя биологи обычно не могут найти объяснения массовым вымираниям на границах крупных геологических эпох. В позднем палеозое, вероятно, под влиянием развития подвижных хищников - рыб и головоногих моллюсков - начинается растянутое во времени вымирание слабозащищённых малоподвижных беспозвоночных - трилобитов, граптолитов, ракоскорпионов, панцирных рыб и некоторых других, безраздельно господствовавших в ордовикских и силурийских морях. К триасу они сходят на нет.

Опустевшую сушу постепенно колонизируют существа сухого мира - голосеменные растения (в том числе и хвойные, достигшие в эту эпоху значительного  разнообразия),  пресмыкающиеся и первые млекопитающие.

Для оплодотворения голосеменных не нужна влажная внешняя среда. У них аналог заростка папоротникообразных (спорофит) развивается внутри специальных органов на самом материнском растении. Некоторые части этих органов образуют наружные покровы семени. Безусловно, семя более жизнеспособно в условиях засухи, чем спора.

Прогресс пресмыкающихся связан с решением двух физиологических задач – становлением настоящего лёгочного дыхания и возникновением амниоти-ческого яйца.

Исходно рыбы, находящиеся в условиях дефицита кислорода в воде, приспосабливаются к заглатыванию атмосферного воздуха. Наши лёгкие – это специализированный вырост пищеварительного тракта. Школьный представитель земноводных – лягушка – не имеет грудной клетки из рёбер, она тоже заглатывает кислород посредством движения кожной складки под нижней челюстью. Такой тип дыхания несовершенен, поэтому половина кислорода поступает в кровеносное русло через кожу. Кожное дыхание возможно только через влажные слизистые покровы. Если кожа высохнет, она станет непроницаемой для газов воздуха.

Чтобы грудная клетка совершала дыхательные движения, необходимы, во- первых, подвижные рёбра, посредством суставов прикрепляющиеся к позвонкам; во-вторых – специализированные мышцы, поднимающие и опускающие рёбра и в-третьих – нервный центр в продолговатом мозгу, который регулирует частоту дыхательных движений. Весь этот комплекс появляется только у пресмыкающихся, что позволяет им иметь сухие, не теряющие влагу покровы.

Амниотическое яйцо – это яйцо, в котором развиваются внезародышевые оболочки – амнион. Представьте себе головастика, заключённого в пузырёк с жидкостью. Стенки пузырька и есть амнион, выделяющий амниотическую жидкость. Когда «головастик» разовьётся и покинет яйцо, внезародышевые оболочки отмирают. Потомки рептилий - млекопитающие и птицы - сохранили амниотическое яйцо.

Млекопитающие старше птиц на 70 млн. лет. Они очень рано отделились от рептилий – ещё в триасе, поэтому несут на себе следы недоделок. В частности, у них сохранились кожные железы – сальные, потовые, млечные.

 

Динозавры появляются в следующем, юрском периоде.

 
  

Именно в юре происходят самые крупные тектонические процессы мезозоя – наиболее интенсивный раскол континентальных плит, формирование водоёмов, превратившихся позже в Индийский и Атлантический океаны. Формировались новые горные цепи (каледонская складчатость) и лавовые плато. Окружающая Комсомольск-на-Амуре горная страна - Сихотэ-Алинь, Баджал и соседние хребты имеют мезозойское происхождение. На суше господствуют голосеменные, образующие беннетитово-цикадофитовые леса в тропиках, гинкговые и кордаитово-хвойные - в умеренной зоне. В это время на суше возникают самые гигантские формы животных, и это исключительно рептилии. Млекопитающие мезозоя – мелкие и редкие крысовидные существа, темпы эволюции которых совершенно несравнимы с эволюцией пресмыкающихся.

Меловой период, как упоминалось выше – это время растительной революции, полной смены ведущих групп продуцентов как на море, так и на суше и перевода в подводные известняки огромного количества атмосферной углекислоты. Завершается раскол Гондваны и Лавразии, формирования Атлантического и Индийского океанов, закрывается океан Тетис.

 
Меловые утёсы в юго-восточной Англии
 

Меловой период для геолога – это действительно время отложения мощных меловых толщ, до сотни и более метров. Вам знакомы выраженеия «меловые скалы Дувра», «Альбион»... Альбум по латыни – «белый».

Мел состоит из останков одноклеточных водорослей кокколитофорид, точнее – их панцирей, состоящих из известковых чешуек - кокколитов. Эта группа простейших существует и сейчас; иногда они так обильны, что окрашивают морскую воду в молочно-белый цвет. Кокколитофориды, расцвет которых пришёлся на поздний мезозой, связали и отложили на морском дне огромное количество углекислоты, изъятой в конечном счёте из атмосферы. Это привело к некоторому понижению средней температуры земной атмосферы, и, безусловно, снизило продуктивность сухопутных растений (меньше углекислого газа – пропорционально меньше скорость фотосинтеза). 

Ещё одна особенность мелового периода – становление покрытосеменных (цветковых) растений. Появились они в раннем мелу, вероятно на территории нынешней Юго-Восточной Азии. Это были невысокие деревья или кустарники . Как ни странно, древнейшая ныне живущая ветвь покрытосеменных растений - это порядок нимфейные (с близкими к нему лотосовыми и раффлезиевыми), пресноводные растения с плавающими листьями, "водяные лилии". Они относятся к подклассу магнолиевых. Собственно магнолии в российской части Дальнего Востока встречаются на Южных Курилах; в южной части Хабаровского края произрастают другие представители подкласса -  лимонник китайский и местные нимфейные, лотосовые, раффлезиевые - кувшинковые, роголистник, лотос Комарова, бразения Норденшельда.

 
  

В среднем мелу, вероятнее всего, после разрушения некоего изолирующего барьера, в течение нескольких миллионов лет они распространились практически всесветно и дали мощную вспышку формообразования, а в позднем мелу стали господствующей группой наземных растений, сформировав целостные сообщества, состоящие из многих ярусов. В это время растительность приобрела вид, близкий к современному -  существовали платаны, дубы, лавры, появляются первые травянистые растения – лютиковые, однодольные.


Кайнозойская эра (эра новой жизни) началась 65 млн лет назад и длится в настоящее время. Она подразделяется на третичный и четвертичный периоды.
 
Происходит расцвет покрытосеменных растений. Разнообразие цветков и плодов цветковых растений обусловило большое разнообразие насекомых, которые ими питаются.
 
23-03-2018 09-18-59.jpg
Лес кайнозойской эры
 
Плоды растений и многочисленные насекомые расширили кормовую базу птиц. Птицы стали господствующим классом кайнозойской эры.
 
Вторым господствующим классом стали млекопитающие. К началу эры они были представлены насекомоядными. Далее началась специализация млекопитающих к разным экологическим нишам, и возникают современные отряды.
 
 21-03-2018 19-20-06.jpg
Фауна кайнозоя
 
Некоторые млекопитающие осваивают водную среду. Появляются китообразные и ластоногие.
 
В четвертичном периоде появляются приматы и человек.
 
21-03-2018 19-22-37.jpg


ТЕМА: Многообразие органического мира. Классификация организмов. 


МНОГООБРАЗИЕ ОРГАНИЧЕСКОГО МИРА

НЕОБХОДИМО ЗАПОМНИТЬ

ВАЖНО!

Всю жизнь великий ученый Карл Линней посвятил систематизации живой и неживой природы. Основной его труд — «Система природы», в котором он описал огромное для того времени число видов растений и животных. В первом издании этой книги было лишь 13 страниц, а в последнем, двенадцатом — 2335. Если бы мы сегодня попытались описать все известные нам виды растений, животных, грибов, микроорганизмов, уделив каждому виду по 10 строк, то описания заняли бы 10 тыс. таких книг, как «Система природы».

КАРЛ ЛИННЕЙ (1707–1778)

Шведский натуралист, врач. Основоположник принципов и методов систематики органического мира. Основатель и первый президент Шведской академии наук. Почетный член Санкт-Петербургской академии наук.

Карл Линней впервые ввел в науку систему двойных латинских названий живых организмов, так называемую бинарную номенклатуру, которая позволила установить порядок в описании новых видов. Введение латыни для научных наименований живых организмов существенно облегчило общение ученых разных стран. Каждый организм должен в соответствии с требованиями бинарной номенклатуры именоваться сначала родовым названием (пишется с прописной буквы), а затем видовым (пишется со строчной буквы).

В разных районах нашей страны одного и того же зверька – степного сурка называют по-разному: байбак, бабак, бабачок, тарбаган, свиц, свистун, суур, сугур, эксачок. Научное же латинское название этого вида – Marmota bobak (сурок-байбак) – является единственным, которым пользуются зоологи.

Искусственная и естественная системы. Если нам нужно установить порядок в книгохранилище, то мы можем исходить из самых разных принципов. Можем классифицировать книги, например, по цвету обложки или формату. Подобная классификация книг искусственна, так как она не отражает главного — содержания книг.

Система Линнея была во многом искусственной. В основу классификации он положил сходство организмов по некоторым наиболее легко отличимым признакам. Но эти сходные признаки не всегда означают их общее происхождение. Линнею еще не были известны очень многие научные факты, позволяющие оценить степень родства тех или иных организмов. Объединив растения по числу тычинок, по характеру опыления, Линней в ряде случаев создал совершенно искусственные группы. Так, в класс растений с пятью тычинками он объединил морковь, лен, лебеду, колокольчики, смородину и калину. Из-за различий в числе тычинок ближайшие родственники, например брусника и черника, попали в разные классы. Зато в другом классе (однодомных растений) встретились осока, береза, дуб, ряска, крапива и ель. Однако, несмотря на эти очевидные просчеты, искусственная система Линнея сыграла огромную роль в истории биологии, так как помогала ориентироваться в огромном многообразии живых существ. Когда К. Линней и его последователи группировали близкие виды в роды, роды – в семейства и т. д., они брали за основу внешнее сходство форм. Причины такого сходства оставались нераскрытыми.

Решение этого важнейшего вопроса принадлежит Ч. Дарвину, который показал, что причиной сходства может быть общность происхождения, т. е. родство. Со времен Дарвина систематика стала эволюционной наукой. Если теперь зоолог-систематик объединяет роды собак, лисиц и шакалов в единое семейство псовых, то он исходит не только из внешнего сходства форм, но и из общности их происхождения (родства). Общность происхождения доказывается изучением исторического развития и строения ДНК описываемых видов.

Для того чтобы построить систему той или иной группы, ученые используют совокупность наиболее существенных признаков: изучают ее историческое развитие по ископаемым остаткам, исследуют сложность анатомического строения современных видов, особенности размножения, сложность организации (неклеточные – клеточные, безъядерные – ядерные, одноклеточные – многоклеточные), сравнивают их эмбриональное развитие, особенности химического состава и физиологии, изучают тип запасающих веществ, современное и прошлое распространение на нашей планете. Это позволяет определить положение данного вида среди остальных и построить естественную систему, отражающую степень родства между группами организмов.

Система безъядерных организмов оставалась искусственной вплоть до второй половины XX столетия. Это объясняется тем, что в распоряжении ученых еще не было точных методов определения степени родства микроорганизмов. Применение современных методов молекулярной биологии позволило положить в основу систематики прокариот строение их геномов. Результаты оказались впечатляющими. Стало очевидным, что многие прокариоты, ранее объединявшиеся в те или иные систематические группы, совсем не родственны друг другу. Хорошо известная ранее группа экстре-мофильных (живущих в экстремальных условиях) прокариот оказалась настолько отличной от бактерий, что их пришлось выделить в отдельное царство – археи. Ранее включавшиеся в царство растений синезеленые водоросли оказались совсем не растениями, они составляют подцарство цианобактерий в царстве бактерий. Вот как выглядит упрощенная схема соподчинения систематических единиц, используемых для естественной классификации:

ИМПЕРИЯ (неклеточные и клеточные)

НАДЦАРСТВО (прокариоты и эукариоты)

ЦАРСТВО (растения, животные, грибы, бактерии, археи, вирусы)

ПОДЦАРСТВО (одноклеточные, многоклеточные)

ТИП (например, членистоногие или хордовые)

КЛАСС (например, насекомые)

ОТРЯД (например, бабочки)

СЕМЕЙСТВО (например, белянки)

РОД (например, белянка)

ВИД (например, капустная белянка)

Интерактивная схема «Доказательства эволюции»

перейдите по ссылке!!!   обязательно, чтобы картинки раскрылись.

ИНТЕРАКТИВНАЯ СХЕМА «КРИТЕРИИ ВИДА»

Рассмотрите изображения, нажмите на карточку и прочтите описание.

Морфологический критерий

Морфологический критерий основан на сходстве внешнего и внутреннего строения между особями одного вида. Морфологический критерий – самый удобный и поэтому широко используется в систематике.

Виды двойники

Иногда особи в пределах вида сильно различаются. Существуют виды морфологически сходные, но особи этих видов не скрещиваются между собой. Это – виды-двойники

Физиологический критерий

В основу физиологического критерия положено сходство всех процессов жизнедеятельности у особей одного вида, прежде всего сходство размножения. Особи разных видов, как правило, не скрещиваются, или потомство их бесплодно.

Географический критерий

Географический критерий основан на том, что каждый вид занимает определённую территорию. Огромное число видов имеет накладывающиеся или перекрывающиеся ареалы. Существуют виды, не имеющие чётких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши всех континентов или океана.

Экологический критерий

Лютик едкий произрастает на пойменных лугах, лютик ползучий – по берегам рек и канав, лютик жгучий – на заболоченных местах.

Генетический критерий

Генетический критерий основан на различии видов по кариотипам. Для подавляющего большинства видов характерен строго определённый кариотип. У многих видов число хромосом одинаково и форма их сходна. Иногда в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций.

ОПРЕДЕЛЕНИЕ КРЕСТОЦВЕТНЫХ

Растение 1
Растение 2
Растение 3
Растение 4
Растение 5



 ГРУППА 405 ХИМИЯ 41,42

ТЕМА:  Соли и их свойства.   Взаимодействие солей с металлами. Взаимодействие солей друг с другом. 

Соли как электролиты. Соли средние, кислые и оснóвные. 

Химические  свойства солей в свете теории электролитической диссоциации. 



Соли это сложные вещества, состоящие из одного (нескольких) атомов металла (или более сложных катионных групп, например, аммонийных групп NН4+, гидроксилированных групп Ме(ОН)nm+) и одного (нескольких) кислотных остатков. Общая формула солей МеnАm, где А - кислотный остаток. Соли (с точки зрения электролитической диссоциации) представляют собой электролиты, диссоциирующие в водных растворах на катионы металла (или аммония NН4+) и анионы кислотного остатка.

Классификация. По составу соли подразделяют на средние (нормальные), кислые (гидросоли), основные (гидроксосоли)двойныесмешанные и комплексные (см. таблицу).

 

Таблица - Классификация солей по составу

СОЛИ

Средние

(нормальные) - продукт полного замещения атомов водорода в кислоте на металл

AlCl3

Кислые(гидросоли) - продукт неполного замещения атомов водорода в кислоте на металл

КHSO4

Основные (гидроксосоли) -продукт неполного замещения ОН-групп основания на кислотный остаток

FeOHCl

Двойные - содержат два разных металла и один кислотный остаток

КNaSO4

Смешанные - содержат один металл и несколько кислотных остатков

CaClBr

Комплексные

[Cu(NH3)4]SO4

 

Физические свойства. Соли - это кристаллические вещества разных цветов и разной растворимости в воде.

 

Химические свойства

 

1) Диссоциация. Средние, двойные и смешанные соли диссоциируют одноступенчато. У кислых и основных солей диссоциация происходит ступенчато.

 

NaCl  Na+ + Cl.

КNaSO4  К+ + Na+ + SO42– .

CaClBr  Ca2+ + Cl + Br.

КHSO4  К+ + НSO4                     HSO4  H+ + SO42–.

FeOHClFeOH+ + Cl                   FeOH+Fe2+ + OH.

[Cu(NH3)4]SO [Cu(NH3)4]2+ + SO42–                   [Cu(NH3)4]2+  Cu2+ + 4NH3.

 

2) Взаимодействие с индикаторами. В результате гидролиза в растворах солей накапливаются ионы Н+ (кислая среда) или ионы ОН (щелочная среда). Гидролизу подвергаются растворимые соли, образованные хотя бы одним слабым электролитом. Растворы таких солей взаимодействуют с индикаторами:

 

индикатор + Н+ (ОН)  окрашенное соединение.

 

AlCl+ H2 AlOHCl2 + HCl       Al3+ + H2 AlOH2+ + H+

 

3) Разложение при нагревании. При нагревании некоторых солей они разлагаются на оксид металла и кислотный оксид:

 

СаСO3  СаO + СО2­.

 

Соли бескислородных кислот при нагревании могут распадаться на простые вещества:

 

2AgCl  Ag + Cl2­.

 

Соли, образованные кислотами-окислителями, разлагаются сложнее:

NO3  NO2 + O2­.

4) Взаимодействие с кислотамиРеакция происходит, если соль образована более слабой или летучей кислотой, или если образуется осадок.

2HCl + Na2CO ® 2NaCl + CO2­ + H2O              2H+ + CO32– ® CO2­ + H2O.

СaCl2 + H2SO4 ® CaSO4¯ + 2HCl             Сa2+ + SO42- ® CaSO4¯.

Основные соли при действии кислот переходят в средние:

 

FeOHCl + HCl ® FeCl2 + H2O.

 

Средние соли, образованные многоосновными кислотами, при взаимодействии с ними образуют кислые соли:

 

Na2SO4 + H2SO4 ® 2NaHSO4.

 

5) Взаимодействие со щелочами. Со щелочами реагируют соли, катионам которых соответствуют нерастворимые основания.

 

 CuSO4 + 2NaOH ® Cu(OH)2¯ + Na2SO4              Cu2+ + 2OH– ® Cu(OH)2¯.

 

6) Взаимодействие друг с другомРеакция происходит, если взаимодействуют растворимые соли и при этом образуется осадок.

AgNO3 + NaCl ® AgCl¯ + NaNO3                             Ag+ + Cl– ® AgCl¯.

7) Взаимодействие с металлами. Каждый предыдущий металл в ряду напряжений вытесняет последующий за ним из раствора его соли:

Fe + CuSO4 ® Cu¯ + FeSO4            Fe + Cu2+ ® Cu¯ + Fe2+.

LiRbKBaSrCaNaMgAlMnZnCrFeCdCoNiSnPb, H, SbBiCuHgAgPdPtAu

8) Электролиз (разложение под действием постоянного электрического тока). Соли подвергаются электролизу в растворах и расплавах:

 

2NaCl + 2H2H2­ + 2NaOH + Cl2­.

2NaClрасплав 2Na + Cl2­.

 

9) Взаимодействие с кислотными оксидами.

 

СО2 + Na2SiO ® Na2CO + SiO2

 

Na2CO + SiO2  СО2­ + Na2SiO3

 

Получение. 1) Взаимодействием металлов с неметаллами:

 

2Na + Cl2 ® 2NaCl.

 

2) Взаимодействием основных и амфотерных оксидов с кислотными оксидами:

 

 CaO + SiO2 CaSiO3                       ZnO + SO3 ZnSO4.

 

3) Взаимодействием основных оксидов с амфотерными оксидами:

 

Na2O + ZnO  Na2ZnO2.

 

4) Взаимодействием металлов с кислотами:

 

2HCl + Fe ® FeCl2 + H2­.

 

5Взаимодействием основных и амфотерных оксидов с кислотами:

 

Na2O + 2HNO3 ® 2NaNO3 + H2O                      ZnO + H2SO4 ® ZnSO4 + H2O.

 

6) Взаимодействием амфотерных оксидов и гидроксидов со щелочами:

 

В растворе: 2NaOH ZnO H2® Na2[Zn(OH)4]              2OH ZnO + H2О ® [Zn(OH)4]2–.

При сплавлении с амфотерным оксидом: 2NaOH ZnO  Na2ZnO2 + H2O.

В растворе: 2NaOH Zn(OH)2 ® Na2[Zn(OH)4]                 2OH   Zn(OH)2 ® [Zn(OH)4]2–

При сплавлении: 2NaOH Zn(OH)2  Na2ZnO2 + 2H2O.

 

7) Взаимодействием гидроксидов металлов с кислотами:

 

Ca(OH)2 + H2SO4 ® CaSO4¯ + 2H2O                         Zn(OH)2 + H2SO4 ® ZnSO4 + 2H2O.

 

8) Взаимодействием кислот с солями:

 

2HCl + Na2® 2NaCl + Н2S­.

 

9) Взаимодействием солей со щелочами:

 

ZnSО4 2NaOH ® Na2SO4 + Zn(OH)2¯.

 

10) Взаимодействием солей друг с другом:

 

AgNO3 + KCl ® AgCl¯ + KNO3.

Тема: Соли как электролиты. Соли средние, кислые и оснóвные. 
Химические  свойства солей в свете теории электролитической диссоциации. 

Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH+4) и анионы кислотных остатков.

Например, диссоциация средних солей :

(NH4)2SO-> 2NH+4+ SO2-4;

Na3PO -> 3 Na + PO 3- 4

Кислые же и основные соли диссоци­ируют ступенчато:


Диссоциация кислых солей

Диссоциация основных солей

У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода.

KHSO-> K + HSO -4

HSO -↔ H + SO 2-4

У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.

Mg( OH )Cl -> Mg( OH )++ Cl -

Mg ( OH )+↔ Mg2+ + OH

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Дайте названия следующим солям:
NaCl
KNO3
FeCl3
Li2SO4
KHSO4
BaOHCl
CaSO3
Al2S3
NaH2PO4
CuCl2

№2. Составьте химические формулы солей по их названиям: хлорид железа (II), гидросульфид калия, сульфид калия, сульфит калия, сульфат калия, ортофосфат железа (III), нитрат магния, карбонат натрия.

№3. Как  двумя способами из оксида кальция можно получить:

а) сульфат кальция; б) ортофосфат кальция.

Составьте уравнения реакций.


ГРУППА 401 БИОЛОГИЯ 33

ТЕМА: Вид. Критерии вида. Популяция. 

Л.р.№3 «Морфологические особенности растений различных видов»

ТЕМА: Вид. Критерии вида. Популяция.


Большой вклад в дальнейшую разработку понятия «вид» внес шведский ученый Карл Линней (1707—1778г.г.). Согласно его представлениям, виды — объективно существующие в природе образования, и между видами имеются различия. Так, например, явно различаются между собой по внешним признакам медведь и волк. Но волк, шакал, гиена, лисица внешне более сходны, так как принадлежат к одному семейству — волчьих. Еще в большей степени сходна внешность у видов одного рода, например волк и собака.

Вид — исторически сложившаяся совокупность популяций, особи которых обладают наследственным сходством морфологических, физиологических и биохимических особенностей, могут свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям жизни и занимают определенную область — ареал. (записать определение в тетрадь)

Особи, принадлежащие к одному виду, не скрещиваются с особями другого вида, характеризуются генетической общностью, единством происхождения. Вид существует во времени: он возникает, распространяется, может сохраняться неопределенно долгое время в устойчивом, почти неизменном состоянии (реликтовые виды) или непрерывно изменяться. Одни виды со временем исчезают, не оставляя новых ветвей. Другие дают начало новым видам.

УчительПризнаки, по которым один вид можно отличить от другого, называют критериями вида. (Ученики записывают в тетрадь названия критериев вида)

Критерии вида:

1. Это был первый и долгое время единственный критерий, используемый для описания видов. Морфологический критерий самый удобный и заметный, поэтому и сейчас широко используется в систематике растений и животных.

В основе морфологического критерия лежит сходство внешнего и внутреннего строения особей одного вида. Морфологический критерий предполагает описание внешних признаков особей, входящих в состав определенного вида. По внешнему виду, размерам и окраске оперения можно, например, легко отличить большого пестрого дятла от зеленого, малого пестрого дятла от желны, большую синицу от хохлатой, длиннохвостой голубой и от гаички. По внешнему виду побегов и соцветий, размерам и расположению листьев легко различают виды клевера: луговой, ползучий, люпиновый, горный.

Однако особи в пределах вида иногда так сильно различаются, что только по морфологическому критерию не всегда удается определить, к какому виду они относятся. Вместе с тем существуют виды морфологически сходные, но особи этих видов не скрещиваются между собой. Это — виды-двойники, которые исследователи открывают во многих систематических группах.

Так, под названием «крыса черная» различают два вида-двойника, имеющих в кариотипах по 38 хромосом и живущих на всей территории Европы, Африки, Америки, Австралии, Новой Зеландии, Азии к западу от Индии, и крыс, имеющих 42 хромосомы, распространение которых связано с монголоидными оседлыми цивилизациями, населяющими Азию к востоку от Бирмы. Установлено также, что под названием «малярийный комар» существует до 15 внешне неразличимых видов, ранее считавшихся одним видом. Около 5% всех видов насекомых, птиц, рыб, земноводных, червей составляют виды-двойники.

2. В основу физиологического критерия положено сходство всех процессов жизнедеятельности у особей одного вида, прежде всего сходство размножения. Особи разных видов, как правило, не скрещиваются, или потомство их бесплодно. Например, у многих видов мухи дрозофилы сперма особей чужого вида вызывает иммунную реакцию, что приводит к гибели сперматозоидов в половых путях самки. В то же время в природе есть виды, особи которых скрещиваются и дают плодовитое потомство (некоторые виды канареек, зябликов, тополей, ив).

3. Географический критерий основан на том, что каждый вид занимает определенную территорию или акваторию, называемую ареалом. Он может быть большим или меньшим, прерывистым или сплошным. Однако огромное число видов имеет накладывающиеся или перекрывающиеся ареалы.

Кроме того, существуют виды, не имеющие четких границ распространения, а также существуют виды-космополиты. Космополитами являются некоторые обитатели внутренних водоемов — рек и пресноводных озер (виды рдестов, ряски, тростник). Обширный набор космополитов имеется среди сорных и мусорных растений, синантропных животных (виды, обитающие рядом с человеком или его жилищем) — постельный клоп, рыжий таракан, комнатная муха, а также одуванчик лекарственный, ярутка полевая, пастушья сумка и др.

Существуют также виды, которые имеют разорванный ареал. Так, например, липа растет в Европе, встречается в Кузнецком Алатау и Красноярском крае. Голубая сорока имеет две части ареала — западноевропейскую и восточносибирскую. Поэтому географический критерий, как и другие, не является абсолютным.

4. Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя свойственные ему функции в определенном биогеоценозе. Так, например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологической приуроченности. К ним относятся многие сорные растения, а также виды, находящиеся под опекой человека: комнатные и культурные растения, домашние животные.

Особенности поведения подчас тесно связаны со спецификой вида, например, с особенностями устройства гнезда. Три вида наших обычных синиц гнездятся в дуплах лиственных деревьев, преимущественно берез. Большая синица на Урале выбирает обычно глубокое дупло в нижней части ствола березы или ольхи, образовавшееся в результате выгнивания древесины. Это дупло недоступно ни дятлам, ни воронам, ни хищным млекопитающим. Синица московка заселяет морозобойные трещины в стволах березы и ольхи. Гаичка же предпочитает строить дупло сама, выщипывая полости в трухлявых или старых стволах березы и ольхи, и без этой трудоемкой процедуры она не отложит яиц.

Так, виды дятлов различаются по характеру питания. Большой пестрый дятел зимой питается семенами лиственницы и сосны, раздалбливая шишки в своих «кузницах». Черный дятел желна добывает личинок усачей и златок из-под коры и из древесины елей, а малый пестрый дятел долбит мягкую древесину ольхи либо добывает насекомых из стеблей травянистых растений.

5. Генетический критерий основан на наборе хромосом, свойственный конкретному виду организма. Виды различаются по числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является абсолютным.

Во-первых, у многих видов число хромосом одинаково и форма их сходна. Например, у видов растений семейства бобовых имеют 22 хромосомы. Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций. Например, ива козья может иметь диплоидное (38) или тетраплоидное (76) число хромосом. У серебристого карася встречаются популяции с набором хромосом 100, 150, 200, тогда как нормальное число их равно 50. У диких горных баранов, разными исследователями выделялось от 1 до 17 видов. Анализ показал наличие трех кариотипов: 54-хромосомный — у муфлонов, 56-хромосомный — у архаров и аргали и 58-хромосомный — у обитателей гор Средней Азии — уриалов. У радужной форели число хромосом варьирует от 58 до 64, у беломорской сельди встречаются особи с 52 и 54 хромосомами. В Таджикистане на участке протяженностью всего 150 км, зоологами была обнаружена популяция слепушонки обыкновенной с набором хромосом от 31 до 54.

Таким образом, на основе генетического критерия нельзя достоверно определить принадлежность особей к конкретному виду.

6. Биохимический критерий позволяет различать виды по составу и структуре определенных белков, нуклеиновых кислот и др. Особи одного вида имеют сходную структуру ДНК, что обусловливает синтез одинаковых белков, отличающихся от белков другого вида. Вместе с тем у некоторых бактерий, грибов, высших растений состав ДНК оказался очень близким. Следовательно, есть виды-двойники и по биохимическим признакам.

Интерес к этому критерию появился в последние десятилетия в связи с развитием биохимических исследований. Он не находит широкого применения, так как не существует каких-либо специфических веществ, характерных только для одного вида и, кроме того, он весьма трудоемкий и далеко не универсальный. Однако им можно воспользоваться в тех случаях, когда другие критерии «не работают». Разработанные методы дают возможность сравнивать состав ДНК у законсервированных в толщах земли бактерий и ныне живущих форм. Было проведено, например, сравнение состава ДНК у пролежавшей около 200 млн. лет в толще солей палеозойской бактерии псевдомонады солелюбивой и у ныне живущих псевдомонад. Состав их ДНК оказался идентичным, а биохимические свойства — сходными.

7. Исторический критерий определяется общностью предков организмов, у них общая единая история возникновения и развития вида.

Таким образом, только учет всех или большинства критериев позволяет отличить особей одного вида от другого. Основной формой существования жизни и единицей классификации живых организмов является вид. Для выделения вида используется совокупность критериев: морфологический, физиологический, географический, экологический, генетический, биохимический. Вид является результатом длительной эволюции органического мира. Будучи генетически закрытой системой, он, тем не менее, исторически развивается и изменяется.

3 ЭТАП: ВЫВОД ПО ТЕМЕ УРОКА

Учитель: 1. Что представляет собой вид? 2. Что такое критерии вида? 3. Применение, каких критериев достаточно для выделения вида? 4. Какие критерии наиболее объективны для разделения близкородственных видов?

Сделаем вывод: Вид — это совокупность особей, которые обладают наследственным сходством морфологических, физиологических и биохимических особенностей, могут свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям и занимают определенный ареал. Порой самые опытные биологи становятся в тупик, определяя, принадлежат ли данные особи к одному виду или нет, для этого требуется учитывать все критерии вида.




Л.р.№1 «Морфологические особенности растений различных видов».
 

ГРУППА 305 ХИМИЯ 8

ТЕМА: Предмет органической химии. Природные, искусственные и синтетические органические вещества. Сравнение органических веществ с неорганическими.

Органической химией изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особенная «жизненная сила» - vis vitalis, которая действует только в живых организмах, а химики способны лишь выделять органические вещества из продуктов жизнедеятельности , но не могут синтезировать их. Поэтому шведский химик Й.Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы».Именно Берцелиус ввел понятие органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» -витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ – дициана и воды:


  

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата  аммония, получил мочевину – продут жизнедеятельности живых организмов



Изумлённый таким результатом, Вёлер написал Берцелиусу: «Должен сказать вам, что я умею приготовить мочевину, не нуждаясь не в почке, ни в живом организме вообще»

В последние годы блестящие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Берло (1854), сахаристых веществ А.Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

 

"Органическая химия есть химия углеводородов и их производных, т.е. продуктов, образующихся при замене водорода другими атомами или группами атомов".

 

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах…  Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях… Ни  в  одном из элементов… способности к усложнению не развито в такой степени, как в углероде… Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) – в растения (фотосинтез), из растений – в животные организмы, из живого – в мертвое, из мертвого – в живое…(рис 1).



Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1.      Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических – почти 18млн (табл. 1).

 

Таблица 1. Рост числа известных органических соединений

Год

Число известных органических соединений

1880

12 000

1910

150 000

1940

500 000

1960

1 000000

1970

2 000000

1980

5 500 000

2000

18 000000

 

2.      В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3.      Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводороды, нуклеиновые кислоты и. т. д.

4.      Органические вещества можно расположить в ряд сходных по составу, строению и свойствам – гомологов

 

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическими свойствам, где каждый член отличается от предыдущего на гомологическую разность СН2

 

5.      Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причины  различий в свойствах изомеров?

 

Изомерия – это явление существования разных веществ –изомеров с одинаковым качественным и количественным составом, т.е. одинаковой молекулярной формулой.

 

Величайшим обобщением знаний о неорганических  веществах является Периодический закон и Периодическая  система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служат теория строения органических соединений А. М. Бутлерова. Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления». В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни.  В любом организме, в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т.е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и.т.д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2)

Развитие биотехнологии, т.е. получения органических веществ не из живых организмов, а из клеточных культур (например, получение белков с помощью дрожжей на основе углеводородного сырья), генной инженерии, т.е. синтеза важнейших соединений белковой природы (например, синтез инсулина, интерферона), создание новых видов высокопродуктивных организмов было бы невозможно без достижения органической химии.

 

Таблица 2. Некоторые природные и синтетические вещества.

Природные вещества

Синтетические вещества

Белки, углеводы, жиры

Пищевые добавки, стимуляторы

Витамины

Синтетические витамины

Ферменты

Катализаторы

Гормоны

Гормональные препараты

Лекарства растительного и природного происхождения

Синтетические лекарства


Комментариев нет:

Отправить комментарий